BackgroundLead-exposed workers may suffer adverse health effects under the currently regulated blood lead (BPb) levels. However, a probabilistic assessment about lead exposure-associated anemia risk is lacking. The goal of this study was to examine the association between lead exposure and anemia risk among factory workers in Taiwan.MethodsWe first collated BPb and indicators of hematopoietic function data via health examination records that included 533 male and 218 female lead-exposed workers between 2012 and 2014. We used benchmark dose (BMD) modeling to estimate the critical effect doses for detection of abnormal indicators. A risk-based probabilistic model was used to characterize the potential hazard of lead poisoning for job-specific workers by hazard index (HI). We applied Bayesian decision analysis to determine whether BMD could be implicated as a suitable BPb standard.ResultsOur results indicated that HI for total lead-exposed workers was 0.78 (95% confidence interval: 0.50–1.26) with risk occurrence probability of 11.1%. The abnormal risk of anemia indicators for male and female workers could be reduced, respectively, by 67–77% and 86–95% by adopting the suggested BPb standards of 25 and 15 μg/dL.ConclusionsWe conclude that cumulative exposure to lead in the workplace was significantly associated with anemia risk. This study suggests that current BPb standard needs to be better understood for the application of lead-exposed population protection in different scenarios to provide a novel standard for health management. Low-level lead exposure risk is an occupational and public health problem that should be paid more attention.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-017-4315-7) contains supplementary material, which is available to authorized users.
Assessing inter-individual variability in responses to xenobiotics remains a substantial challenge, both in drug development with respect to pharmaceuticals and in public health with respect to environmental chemicals. Although approaches exist to characterize pharmacokinetic variability, there are no methods to routinely address pharmacodynamic variability. In this study, we aimed to demonstrate the feasibility of characterizing inter-individual variability in a human in vitro model. Specifically, we hypothesized that genetic variability across a population of iPSC-derived cardiomyocytes translates into reproducible variability in both baseline phenotypes and drug responses. We measured baseline and drug-related effects in iPSC-derived cardiomyocytes from 27 healthy donors on kinetic Ca2+ flux and high-content live cell imaging. Cells were treated in concentration-response with cardiotoxic drugs: isoproterenol (β-adrenergic receptor agonist/positive inotrope), propranolol (β-adrenergic receptor antagonist/negative inotrope), and cisapride (hERG channel inhibitor/QT prolongation). Cells from four of the 27 donors were further evaluated in terms of baseline and treatment-related gene expression. Reproducibility of phenotypic responses was evaluated across batches and time. iPSC-derived cardiomyocytes exhibited reproducible donor-specific differences in baseline function and drug-induced effects. We demonstrate the feasibility of using a panel of population-based organotypic cells from healthy donors as an animal replacement experimental model. This model can be used to rapidly screen drugs and chemicals for inter-individual variability in cardiotoxicity. This approach demonstrates the feasibility of quantifying inter-individual variability in xenobiotic responses and can be expanded to other cell types for which in vitro populations can be derived from iPSCs.
BACKGROUND: Risk assessment of chemical mixtures or complex substances remains a major methodological challenge due to lack of available hazard or exposure data. Therefore, risk assessors usually infer hazard or risk from data on the subset of constituents with available toxicity values. OBJECTIVES: We evaluated the validity of the widely used traditional mixtures risk assessment paradigms, Independent Action (IA) and Concentration Addition (CA), with new approach methodologies (NAMs) data from human cell-based in vitro assays. METHODS: A diverse set of 42 chemicals was tested both individually and as mixtures for functional and cytotoxic effects in vitro. A panel of induced pluripotent stem cell (iPSCs)-derived models (hepatocytes, cardiomyocytes, endothelial, and neurons) and one primary cell type (HUVEC) were used. Bayesian concentration-response modeling of individual chemicals or their mixtures was performed for a total of 47 phenotypes to derive point-ofdeparture (POD) values. Probabilistic IA or CA was conducted to estimate the mixture effects based on the bioactivity profiles from the individual chemicals and compared with mixture bioactivity. RESULTS: All mixtures showed significant bioactivity, even though some were constructed using individual chemical concentrations considered "low" or "safe." Even though CA is much more accurate as a predictor of mixture effects in comparison with IA, with CA-based POD typically within an order of magnitude of the actual mixture, in some cases, the bioactivity of the mixtures appeared to be much greater than that of their components under either additivity assumption. DISCUSSION: These results suggest that CA is a preferred first approximation for predicting mixture toxicity when data for all constituents are available. However, because the accuracy of additivity assumptions varies greatly across phenotypes, we posit that mixtures and complex substances need to be directly tested for their hazard potential. NAMs provide a practical solution that rapidly yields highly informative data for mixtures risk assessment.
“Thorough QT/corrected QT (QTc)” (TQT) studies are cornerstones of clinical cardiovascular safety assessment. However, TQT studies are resource intensive, and preclinical models predictive of the threshold of regulatory concern are lacking. We hypothesized that an in vitro model using induced pluripotent stem cell (iPSC)‐derived cardiomyocytes from a diverse sample of human subjects can serve as a “TQT study in a dish.” For 10 positive and 3 negative control drugs, in vitro concentration‐QTc, computed using a population Bayesian model, accurately predicted known in vivo concentration‐QTc. Moreover, predictions of the percent confidence that the regulatory threshold of 10 ms QTc prolongation would be breached were also consistent with in vivo evidence. This “TQT study in a dish,” consisting of a population‐based iPSC‐derived cardiomyocyte model and Bayesian concentration‐QTc modeling, has several advantages over existing in vitro platforms, including higher throughput, lower cost, and the ability to accurately predict the in vivo concentration range below the threshold of regulatory concern.
BackgroundVariety of environmental and individual factors can cause tuberculosis (TB) incidence change. The purpose of this study was to assess the characteristics of TB trends in the period 2004 - 2008 in Taiwan by month, year, gender, age, temperature, seasonality, and aborigines.MethodsThe generalized regression models were used to examine the potential predictors for the monthly TB incidence in regional and national scales.ResultsWe found that (i) in Taiwan the average TB incidence was 68 per 100,000 population with mortality rate of 0.036 person-1 yr-1, (ii) the highest TB incidence rate was found in eastern Taiwan (116 per 100,000 population) with the largest proportion of TB relapse cases (8.17%), (iii) seasonality, aborigines, gender, and age had a consistent and dominant role in constructing TB incidence patterns in Taiwan, and (iv) gender, time trend, and 2-month lag maximum temperature showed strong association with TB trends in aboriginal subpopulations.ConclusionsThe proposed Poisson regression model is capable of forecasting patterns of TB incidence at regional and national scales. This study suggested that assessment of TB trends in eastern Taiwan presents an important opportunity for understanding the time-series dynamics and control of TB infections, given that this is the typical host demography in regions where these infections remain major public health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.