IntroductionTahyna virus (TAHV), an arbovirus of the genus Orthobunyavirus, is a cause of human diseases and less studied worldwide. In this study, a new strain of TAHV was isolated from Aedes sp. mosquitoes collected in Panjin city, Liaoning province. However, the competent vector of TAHV in China is still unknown.MethodsThe genome of newly isolated TAHV was sequenced and phylogenetic analysis is performed. Aedes albopictus and Culex pipiens pallens were orally infected with artificial virus blood meals (1:1 of virus suspension and mouse blood), the virus was detected in the midgut, ovary, salivary gland and saliva of the mosquitoes. Then, the transmission and dissemination rates, vertical transmission and horizontal transmission of the virus by the mosquitoes were assessed.ResultsPhylogenetic analysis revealed that the virus shared high similarity with TAHV and was named the TAHV PJ01 strain. After oral infection with virus blood meals, Ae. albopictus showed positive for the virus in all tested tissues with an extrinsic incubation period of 2 days and a fluctuating increasement of transmission and dissemination rates. Whereas no virus was detected in the saliva of Cx. pipiens pallens. Suckling mice bitten by infectious Ae. albopictus developed obvious neurological symptoms, including inactivity, hind-leg paralysis and difficulty turning over, when the virus titer reached 1.70×105 PFU/mL in the brain. Moreover, TAHV was detected in the eggs, larvae and adults of F1 offspring of Ae. albopictus.DiscussionAe. albopictus is an efficient vector to transmit TAHV but Cx. pipiens pallens is not. Ae. albopictus is also a reservoir host that transmits the virus vertically, which further increases the risk of outbreaks. This study has important epidemiological implications for the surveillance of pathogenic viruses in China and guiding comprehensive vector control strategies to counteract potential outbreaks in future.
IntroductionNumerous studies on the mosquito life cycle and transmission efficacy were performed under constant temperatures. Mosquito in wild, however, is not exposed to constant temperature but is faced with temperature variation on a daily basis.MethodsIn the present study, the mosquito life cycle and Zika virus transmission efficiency were conducted at daily fluctuating temperatures and constant temperatures. Aedes albopictus was infected with the Zika virus orally. The oviposition and survival of the infected mosquitoes and hatching rate, the growth cycle of larvae at each stage, and the infection rate (IR) of the progeny mosquitoes were performed at two constant temperatures (23°C and 31°C) and a daily temperature range (DTR, 23–31°C).ResultsIt showed that the biological parameters of mosquitoes under DTR conditions were significantly different from that under constant temperatures. Mosquitoes in DTR survived longer, laid more eggs (mean number: 36.5 vs. 24.2), and had a higher hatching rate (72.3% vs. 46.5%) but a lower pupation rate (37.9% vs. 81.1%) and emergence rate (72.7% vs. 91.7%) than that in the high-temperature group (constant 31°C). When compared to the low-temperature group (constant 23°C), larvae mosquitoes in DTR developed faster (median days: 9 vs. 23.5) and adult mosquitoes carried higher Zika viral RNA load (median log10 RNA copies/μl: 5.28 vs. 3.86). However, the temperature or temperature pattern has no effect on transovarial transmission.DiscussionThose results indicated that there are significant differences between mosquito development and reproductive cycles under fluctuating and constant temperature conditions, and fluctuating temperature is more favorable for mosquitos' survival and reproduction. The data would support mapping and predicting the distribution of Aedes mosquitoes in the future and establishing an early warning system for Zika virus epidemics.
The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.