Aims: Sap‐sucking insect pests have become the major threats to many crops in recent years; however, only a few biopesticides have been developed for controlling those pests. Here, we developed a novel pest management strategy, which uses endophytes to express anti‐pest plant lectins. Methods and Results: The fungal endophyte of Chaetomium globosum YY‐11 with anti‐fungal activities was isolated from rape seedlings. Pinellia ternata agglutinin (pta) gene was cloned into YY‐11 mediated by Agrobacterium tumefaciens. The positive transformants, as selected by antibiotic resistance, were evaluated using PCR and Western blot assay. We found that the recombinant endophytes colonized most of the crops, and the resistance of rape inoculated with recombinant endophytic fungi significantly inhibited the growth and reproduction of Myzus persicae. Conclusions: Our results showed that the recombinant endophytes expressing Pinellia ernata agglutinin (PTA) may endow hosts with resistance against sap‐sucking pests. Significance and Impact of the Study: This research may have important implications for using endophytes to deliver insecticidal plant lectin proteins to control sap‐sucking pests for crop protection.
We developed a novel pest management strategy, which uses endophytes to express anti-pest plant lectins. Fungal endophyte of Chaetomium globosum YY-11 with anti-fungi activities was isolated from rape seedlings, and bacterial endophytes of SJ-10 (Enterobacter sp.) and WB (Bacillus subtilis) were isolated from rice seedlings. Pinellia ternate agglutinin gene was cloned into SJ-10 and WB for expression by a shuttle vector, and YY-11 was mediated by Agrobacterium tumefaciens. Positive transformants were evaluated using PCR and Western blot assay. Recombinant endophytes colonized most of crops, and resistance of rice seedlings, which were inoculated with the recombinant endophytic bacteria, to white backed planthoppers was dramatically enhanced by decreasing the survival and fecundity of white backed planthoppers. Rape inoculated with recombinant endophytic fungi significantly inhibited the growth and reproduction of aphids. Recombinant endophytes expressing PTA may endow hosts with resistance against sap-sucking pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.