A complete series of calcite-rhodochrosite solid solutions [(Ca1-xMnx)CO3] are prepared, and their dissolution processes in various water samples are experimentally investigated. The crystal morphologies of the solid solutions vary from blocky spherical crystal aggregates to smaller spheres with an increasing incorporation of Mn in the solids. Regarding dissolution in N2-degassed water, air-saturated water and CO2-saturated water at 25 °C, the aqueous Ca and Mn concentrations reach their highest values after 1240–2400 h, 6–12 h and < 1 h, respectively, and then decrease gradually to a steady state; additionally, the ion activity products (log_IAP) at the final steady state (≈ solubility products in log_Ksp) are estimated to be − 8.46 ± 0.06, − 8.44 ± 0.10 and − 8.59 ± 0.10 for calcite [CaCO3], respectively, and − 10.25 ± 0.08, − 10.26 ± 0.10 and − 10.28 ± 0.03, for rhodochrosite [MnCO3], respectively. As XMn increases, the log_IAP values decrease from − 8.44 ~ − 8.59 for calcite to − 10.25 ~ − 10.28 for rhodochrosite. The aqueous Mn concentrations increase with an increasing Mn/(Ca + Mn) molar ratio (XMn) of the (Ca1-xMnx)CO3 solid solutions, while the aqueous Ca concentrations show the highest values at XMn = 0.53–0.63. In the constructed Lippmann diagram of subregular (Ca1-xMnx)CO3 solid solutions, the solids dissolve incongruently, and the data points of the aqueous solutions move progressively up to the Lippmann solutus curve and then along the solutus curve or saturation curve of pure MnCO3 to the Mn-poor side. The microcrystalline cores of the spherical crystal aggregates are preferentially dissolved to form core hollows while simultaneously precipitating Mn-rich hexagonal prisms.
As an innovative and economical material, hydroxyapatite does little harm to the environment. In this study, a magnesium hydroxyapatite (Mg-HAP) adsorbent was prepared by doping magnesium. Magnesium doping can increase the hydroxyl groups on the surface of Mg-HAP to form more adsorption sites and improve the removal effect of the heavy metal Zn(II) in water. This study was implemented to survey the effect of different sorption elements, including the liquor initial pH, initial concentration, dose of adsorbents, and other factors, on the adsorption effect. The outcomes show that the sorption effect was best at the time that the liquor was weakly acidic (pH = 6); At a pH of 6, the temperature of 25 °C when the optimal dosage of adsorbent is 0.25 g, the maximum adsorption amount is 62.11 mg/g. Through data fitting, the adsorption process can be accurately described as a pseudo-second-order dynamics model and the Langmuir isotherm equation. According to the thermodynamic analysis, the sorption of zinc ions by Mg-HAP belongs to the process of spontaneous endothermic and entropy increase, and the increase of temperature was conducive to adsorption. Material characterization and analysis indicate that surface complexation and dissolution-precipitation was the main mechanism for adsorption of Zn(II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.