The study of spatial and temporal changes in precipitation patterns is important to agriculture and natural ecosystems. These changes can be described by some climate change indices. Because these indices often have skewed probability distributions, some common statistical procedures become either inappropriate or less powerful when they are applied to the indices. A nonparametric approach based on stochastic ordering is proposed, which does not make any assumption on the shape of the distribution. This approach is applied to the average length of the period between two adjacent precipitation days, which is called the average number of consecutive dry days (ACDD). This approach is shown to be able to reveal some patterns in precipitation that other approaches do not. Using daily precipitations at 756 stations in China from 1960 to 2015, this work compares the ACDDs in three periods, 1960–1965, 1985–1990, and 2010–2015 for each province in China. The results show that ACDD increases stochastically from the period 1960–1965 to either the period 1985–1990 or the period 2010–2015, or from the period 1985–1990 to the period 2010–2015 in all but three provinces in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.