In this study, cement mortars with different strengths are poured into the large void matrix asphalt macadam material as a semiflexible pavement (SFP) material and the experimental research is carried out. The current research on SFP is mainly focused on the performance of grouting materials and the influence of grouting matrix materials on the overall mechanical properties of SFP and road performance. However, there are some flaws in the study of the influence of grouting material strength on the performance of SFP materials: the difference between the strengths of the selected grouting materials is relatively small, and in some studies, the chosen grouting material strength is low, which leads to insignificant improvements of SFP material performance; besides, the research indicators are also not very comprehensive. In this study, cement grouting asphalt macadam materials are selected as the research object to examine the effect of grouting material strength on the mechanical properties and road performance of SFP materials. Grouting materials with strengths of 19.8 MPa, 30.7 MPa, and 40.2 MPa were poured into the matrix asphalt macadam with a target void ratio of 24% and asphalt content of 2.9% to prepare the corresponding SFP test specimens. The SFP specimens were then subjected to the compressive test, flexural and tensile test, high-temperature stability test, and low-temperature crack resistance test, and the compressive resilient modulus was measured, thereby analyzing the effect of the cement slurry strength on the cement grouting asphalt macadam materials. The results show that when the strength of the cement mortar is 19.8 MPa, 30.7 MPa, and 40.2 MPa, the corresponding SFP material has better mechanical properties. When the strength of the grouting material is 40.2 MPa, the compressive strength of the SFP material is about the same as that of the grouting material. The strength is more than double that of 19.8 MPa and 30.7 MPa, and the flexural tensile strength and elastic modulus also have the above growth laws. The low-temperature crack resistance and high-temperature stability of the SFP material are enhanced with the increase in the strength of the grouting material. When the strength of the grouting material is 40.2 MPa, the mechanical properties and road performance of the SFP material are relatively better. This study provides a reference for strengthening the mechanical properties of SFP materials and boosting the crack resistance of SFP.
With the rise of concrete pumping construction technology, high-mobility concrete has been more and more widely used. However, high fluidity concrete is prepared with high sand ratio and small stones, which weakens the volume stability of aggregate as a skeleton. Therefore, instability often appears in the practical application of large concrete. At present, the research on the stability of concrete interface feature extraction is still relatively scarce. In this paper, through a large number of experiments, the law of the main performance of concrete is systematically studied, and the characteristics of concrete interface are extracted using the principal component analysis (PCA) model. On this basis, the influence of different factors on the stability of concrete is studied, especially the compressive strength, volume stability, and durability of concrete. The experimental results will have a good reference value and far-reaching significance for improving the application status of high fluidity concrete.
The addition of steel fiber to self-consolidating concrete (SCC) may considerably prolong concrete cracking time and improve its deforming performance. Current studies mainly apply high content micro-steel fibers to improve the mechanical performance of SCC whilst assuring its workability, however, there are still very few studies concerning the influence of a mixture of a high content of micro-steel fibers with ordinary steel fibers on the performance of SCC. Thus, this paper conducted experimental studies on micro-steel fiber and ordinary-sized steel fiber hybrid reinforced self-consolidating concrete (MOSCC). Plain self-consolidating concrete (PSCC), micro-steel fiber reinforced self-consolidating concrete (MSCC), and ordinary-sized steel fiber reinforced self-consolidating concrete (OSCC) are proposed for comparison with MOSCC in respects of workability and mechanical performance. Test results show that the hybrid micro-steel fiber and ordinary steel fiber highly enhance the compressive strength, flexural strength, and ductility of SCC as well as maintaining its workability. This paper provides reference to the improvement of the mechanical performance of SCC material and the enhancement of crack resistance of concrete structures.
In order to understand the new-old asphalt diffusion behavior, use the Materials Studio (MS) molecular dynamic simulation software to build a matrix asphalt and aging asphalt molecular model based on the average molecular model of the asphalt, and select the appropriate force field and potential energy function. As well as parameters such as boundary conditions, set up as-phalt-regenerative dot-shaped contact models and laminar contact models. From the perspective of molecular perspectives, the diffusion behavior between the old and new asphalt and the re-generative agent is analyzed. The promotion effect of the asphalt diffusion behavior, the simulation results show that the asphalt's internal diffusion process is mutual, and the promotion effect of aromatherapy regeneratives on the spread of new and old asphalt under the same conditions is better than chain regenerative agents and waste oil regeneration agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.