Besides being a naturally occurring element and an essential micronutrient, copper is used as a pesticide, but at generally higher concentrations. Copper, unlike organic pesticides, does not degrade, but rather enters a complex biogeochemical cycle. In the water column, copper can exist bound to both organic and inorganic species and as free or hydrated copper ions. Water column chemistry affects copper speciation and bioavailability. In all water types (saltwater, brackish water, and freshwater), organic ligands in the water column can sequester the majority of dissolved copper, and therefore, organic ligands play the largest role in copper bioavailability. In freshwater, however, the geochemistry of a particular location, including water column characteristics such as water hardness and pH, is a significant factor that can increase copper bioavailability and toxicity. In most cases, organic ligand concentrations greatly exceed copper ion concentrations in the water column and therefore provide a large buffering capacity. Hence, copper bioavailability can be grossly overestimated if it is based on total dissolved copper (TDCu) concentrations alone. Other factors that influence copper concentrations include location in the water column, season, temperature, depth, and level of dissolved oxygen. For example, concentrations of bioavailable copper may be significantly higher in the bottom waters and sediment pore waters, where organic ligands degrade much faster and dissolved copper is constantly resuspended and recycled into the aquatic system. Aquatic species differ greatly in their sensitivity to copper. Some animals, like mollusks, can tolerate high concentrations of the metal, while others are adversely affected by very low concentrations of copper. Emerging evidence shows that very low, sublethal copper levels can adversely affect the sense of smell and behavior of fish. The developmental stage of the fish at the time of copper exposure is critical to the reversibility of sensory function effects. The fish olfactory system may be the most sensitive structure to copper pollution. The major factors that influence copper-induced toxicity are dissolved organic carbon and water salinity. Dissolved organic carbon reduces copper toxicity by sequestering bioavailable copper and forming organic complexes with it. Salinity, on the other hand, influences copper bioavailability at the biological action site and also affects metal biodistribution and bioaccumulation in the organism. Therefore, the salinity gradient can increase or decrease copper toxicity in different aquatic species. In some killifish, copper may affect different organs at different times, depending on the water salinity. The most studied and best explained copper toxicity mechanisms involve inhibition of key enzymes and disruption of osmoregulation in the gill. Other toxicity mechanisms may involve reactive oxygen species generation and changes of gene transcription in the fish olfactory signaling pathway. More studies are needed to evaluate the potentia...
Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.
Antifouling biocides are used to prevent the settlement and growth of organisms on submerged surfaces. Irgarol 1051 is currently among the most widely used organic booster biocides worldwide. This study reports Irgarol 1051, its major metabolite M1 (aka GS26575), and diuron concentrations found in selected California marinas. Seasonal water samples (n = 46) were collected during the summer and fall of 2006 from eleven marinas throughout Southern and Northern California. The samples were extracted using solid phase extraction and analysed utilizing liquid chromatography tandem mass spectrometry (LC-MS-MS) with electrospray ionization. All three compounds were detected in all samples, representing a 100% frequency of occurrence and indicating widespread use around the sampled marinas. Irgarol concentrations ranged from 12 to 712 ng L(-1) (average 102 ng L(-1)), M1 concentrations were 1-217 ng L(-1) (average 31 ng L(-1)), and diuron concentrations were 5-27 ng L(-1) (average 13 ng L(-1)). In general, concentrations of both Irgarol (15-712 ng L(-1)) and M1 (1-217 ng L(-1)) were greater in samples collected during the summer, corresponding to the peak of the boating season. The detected diuron concentrations in most cases were greater for fall samples (7-27 ng L(-1)), and probably represented a combination of non-agricultural (rights of way) and agricultural applications of diuron in California. The maximum Irgarol concentration detected in California marinas in summer 2006 (712 ng L(-1)) was five times greater than the Irgarol concentration suggested as the plant toxicity benchmark (136 ng L(-1)). Twenty three percent of samples from California marinas in this study exceeded this benchmark, suggesting that detected Irgarol concentrations may be high enough to cause changes in phytoplankton communities in the sampled marinas.
For the aquatic exposure assessment of pesticides, the USEPA uses the Variable Volume Water Model (VVWM) to predict the estimated environmental concentrations (EECs) of a pesticide in a water body that receives runoff inputs from the Pesticide Root Zone Model (PRZM). The standard farm pond and additional generalized static and flowing water bodies used in endangered species assessment (aquatic bins) are used by USEPA to model the worst‐case aquatic exposure for the nationwide exposure assessment. However, whether or not model results are relevant to state‐specific conditions has not been validated. In this study, the USEPA water body scenarios are examined for their capability of providing a conservatively realistic estimate of pesticide aquatic exposures in California's agricultural settings. The sensitivity of modeled EECs to key water body parameters (dimensions, flow, and mass transfer) was explored with a one‐at‐a‐time approach by using the standard farm pond as a baseline. The EECs generated from different USEPA water bodies for the worst‐case loading were compared with the monitoring data observed in California's agriculturally influencing water bodies. Results showed that the farm pond EECs well captured the worst‐case monitoring data, whereas the aquatic bins EECs, especially the flowing bins, tended to overestimate data. The conceptual model of the standard farm pond was also found to be relevant to the highly vulnerable water bodies in California's agricultural areas. The study confirms that VVWM with the standard farm pond scenario is appropriate for the screening‐level regulatory exposure assessment in California's agricultural settings. Core Ideas Protectiveness of exposure modeling with the USEPA farm pond is verified in California. The sensitivity of model results to key water body parameters is explored. The USEPA farm pond well captures worst‐case exposure in California's agricultural settings. The farm pond better reproduces the worst‐case monitoring data than endangered species bins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.