While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. We assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer), from recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle. We validated and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers. Parameters including myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber type-specific manner, revealing a large degree of gender- and muscle-related heterogeneity. Our platform was also tested on pathological muscle tissue (ALS) and adapted for the detection of other resident cell types (leukocytes, satellite cells, capillary endothelium). In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition of healthy and diseased human skeletal muscle.
See related editorial: Baltrusch S, 2023. Automated in-depth fiber and nuclei typing in cross-sectional muscle images can pave the way to a better understanding of skeletal muscle diseases. Acta Physiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.