Axon degeneration has been implicated as a pathological process in several neurodegenerative diseases and acquired forms of neural injury. We have previously shown that stabilizing microtubules can protect axons against excitotoxin-induced fragmentation, however, the alterations of microtubules following excitotoxicity that results in axon degeneration are currently unknown. Hence, this study investigated whether excitotoxicity affects the post-translational modifications of microtubules and microtubule-associated proteins, and whether reversing these changes has the potential to rescue axons from degeneration. To investigate microtubule alterations, primary mouse cortical neurons at 10 days in vitro were treated with 10 or 25 μM kainic acid to induce excitotoxicity and axon degeneration. Post-translational modifications of microtubules and associated proteins were examined at 6 h following kainic acid exposure, relative to axon degeneration. While there were no changes to tyrosinated tubulin or MAP1B, acetylated tubulin was significantly (p < 0.05) decreased by 40% at 6 h post-treatment. To determine whether increasing microtubule acetylation prior to kainic acid exposure could prevent axon fragmentation, we investigated the effect of reducing microtubule deacetylation with the HDAC6 inhibitor, trichostatin A. We found that trichostatin A prevented kainic acid-induced microtubule deacetylation and significantly (p < 0.05) protected axons from fragmentation. These data suggest that microtubule acetylation is a potential target for axonal protection where excitotoxicity may play a role in neuronal degeneration.
Axon degeneration and axonal loss is a feature of neurodegenerative disease and injury and occurs via programmed pathways that are distinct from cell death pathways. While the pathways of axonal loss following axon severing are well described, less is known about axonal loss following other neurodegenerative insults. Here we use primary mouse cortical neuron cultures grown in compartmentalized chambers to investigate the role of calcium in the degeneration of axons that occurs following a somal insult by the excitotoxin kainic acid. Calcium influx has been implicated in both excitotoxicity and axon degeneration mechanisms, however the link between a somal insult and axonal calcium increase is unclear. Live imaging of axons demonstrated that pharmacologically preventing intracellular calcium increases through the endoplasmic reticulum or mitochondria significantly (p < 0.05) reduced axon degeneration. Live calcium‐imaging with the Ca2+ indicator Fluo‐4 demonstrated that kainic acid exposure to the soma resulted in a rapid, and transient, increase in calcium in the axon, which occured even at low kainic acid concentrations that do not cause axon degeneration within 24 h. However, this calcium transient was followed by a gradual increase in axonal calcium, which was associated with axonal loss. Furthermore, treatment with a range of doses of the microtubule stabilizing drug taxol, which protects against axon fragmentation in this model, prevented this gradual calcium increase, suggesting that the intra‐axonal calcium changes are downstream of microtubule associated events. Biochemical analysis of taxol treated neurons demonstrated a shift in microtubule post‐translational modifications, with a significant (p < 0.05) increase in acetylated tubulin and a significant (p < 0.05) decrease in tyrosinated tubulin, suggestive of a more stable microtubule pool. Together our results suggest that axonal degeneration following excitotoxicity is dependent on an increase in axonal calcium, which is downstream of a microtubule‐dependent event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.