An airborne hyperspectral imaging system is typically equipped on an aircraft or unmanned aerial vehicle (UAV) to capture ground scenes from an overlooking perspective. Due to the rotation of the aircraft or UAV, the same region of land cover may be imaged from different viewing angles. While humans can accurately recognize the same objects from different viewing angles, classification methods based on spectral-spatial features for airborne hyperspectral images exhibit significant errors. The existing methods primarily involve incorporating image or feature rotation angles into the network to improve its accuracy in classifying rotated images. However, these methods introduce additional parameters that need to be manually determined, which may not be optimal for all applications. This paper presents a spectral-spatial attention rotation-invariant classification network for the airborne hyperspectral image to address this issue. The proposed method does not require the introduction of additional rotation angle parameters. There are three modules in the proposed framework: the band selection module, the local spatial feature enhancement module, and the lightweight feature enhancement module. The band selection module suppresses redundant spectral channels, while the local spatial feature enhancement module generates a multi-angle parallel feature encoding network to improve the discrimination of the center pixel. The multi-angle parallel feature encoding network also learns the position relationship between each pixel, thus maintaining rotation invariance. The lightweight feature enhancement module is the last layer of the framework, which enhances important features and suppresses insignificance features. At the same time, a dynamically weighted cross-entropy loss is utilized as the loss function. This loss function adjusts the model’s sensitivity for samples with different categories according to the output in the training epoch. The proposed method is evaluated on five airborne hyperspectral image datasets covering urban and agricultural regions. Compared with other state-of-the-art classification algorithms, the method achieves the best classification accuracy and is capable of effectively extracting rotation-invariant features for urban and rural areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.