It is a great challenge to obtain high performance carbon fluoride (CF x ) cathodes with high specific capacity and good rate performance due to the electronic conductivity of CF x being known to decrease with an increase in the specific capacity. Herein, we propose a novel fluorinated graphene (FG)/sulfur hybrid cathode to enhance both the energy density and power density of lithium/carbon fluoride (Li/CF x ) batteries. Impressive enhancements of the specific capacity, discharge voltage, and rate capability are demonstrated with the novel FG/sulfur hybrid cathode. In comparison with the pristine FG cathode, the hybrid cathode exhibits higher electrochemical activity, lower overpotential, and faster ion transfer over the main discharge range. Furthermore, when the melt-diffusion method is used to prepare the hybrid cathode, the uncommon monoclinic sulfur is presented under ambient temperature. A significant synergistic effect which reduces the reaction resistance effectively is demonstrated with the presence of monoclinic sulfur, leading to the highest energy density of 2341 W h kg À1 and a power density up to 13 621 W kg À1 at 8.0 A g À1 . Our results are expected to introduce a new generation of high energy and high power density lithium primary cells, based on a simple and effective strategy employing FG/S hybrid cathodes.
The effects of aluminum (Al) exposure on reproductive functions of male rats were investigated. Forty male Wistar rats (4 weeks old) weighing 75-95 g were randomly divided into four groups and orally exposed to 0 (control group GC), 64.18 (low-dose group GL), 128.36 (middle-dose group GM), and 256.72 (high-dose group GH) mg/kg aluminum trichloride in drinking water for 120 days. The levels of testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were determined by radioimmunoassay. The androgen receptor (AR) expressions in testes were detected respectively by immunohistochemistry and time quantitative PCR. Results showed that the levels of T and LH in GM and GH were lower than those in GC (P< 0.05), but there were no significant changes in FSH level in all Al-treated groups (P > 0.05). AR protein expressions in GM and GH were lower than those in GC (P < 0.05), and there was a dose-response relationship between Al-exposure doses and AR protein expressions. The levels of AR mRNA expressions were lower in all Al-treated groups than those of GC (P < 0.05). The results indicate that Al can cause endocrinal disorders and interfere with AR expression, which suppresses development and functional maintenance of the testes.
The aim of this study was to investigate the effects of aluminum (Al) exposure on the reproductive function in female rats. Forty female Wistar (5 weeks old) rats, weighing 110-120 g, were divided randomly into four groups. They were orally administrated with 0, 64.18, 128.36, and 256.72 mg aluminum chloride (AlCl(3)) per kilogram body weight in drinking water for 120 days. Levels of Al, estrogen (E(2)), progestogen (P), testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum were measured at the end of experiment. The results showed that levels of E(2), P, FSH, and LH were significantly lower and Al concentration was significantly higher in all three Al-treated groups than those in the control group (GC). The level of T was significantly higher in the low- and medium-dose groups (GL and GM) (P < 0.05) but not in high-dose group (GH) compared with GC. The results suggest that the reproductive function of female rats is inhibited under long-term Al exposure in an Al dose-dependent manner.
Background Increasing evidence supports a relationship between obesity and either infertility or subfertility in women. Most previous omics studies were focused on determining if the serum and follicular fluid expression profiles of subjects afflicted with both obesity-related infertility and polycystic ovary syndrome (PCOS) are different than those in normal healthy controls. As granulosa cells (GCs) are essential for oocyte development and fertility, we determined here if the protein expression profiles in the GCs from obese subjects are different than those in their normal-weight counterpart. Methods GC samples were collected from obese female subjects (n = 14) and normal-weight female subjects (n = 12) who were infertile and underwent in vitro fertilization (IVF) treatment due to tubal pathology. A quantitative approach including tandem mass tag labeling and liquid chromatography tandem mass spectrometry (TMT) was employed to identify differentially expressed proteins. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were then conducted to interrogate the functions and pathways of identified proteins. Clinical, hormonal, and biochemical parameters were also analyzed in both groups. Results A total of 228 differentially expressed proteins were noted, including 138 that were upregulated whereas 90 others were downregulated. Significant pathways and GO terms associated with protein expression changes were also identified, especially within the mitochondrial electron transport chain. The levels of free fatty acids in both the serum and follicular fluid of obese subjects were significantly higher than those in matched normal-weight subjects. Conclusions In GCs obtained from obese subjects, their mitochondria were damaged and the endoplasmic reticulum stress response was accompanied by dysregulated hormonal synthesis whereas none of these changes occurred in normal-weight subjects. These alterations may be related to the high FFA and TG levels detected in human follicular fluid.
Ultrathin δ-MnO2 nanoflakes were synthesized via a facile route and present excellent specific capacitance and good cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.