In clinical settings, although Psoriasis Area and Severity Index (PASI) scoring system can provide a quick visual assessment of the severity of psoriasis vulgaris, there is still a strong demand for higher efficiency and accuracy in quantifying the inflammation status of psoriatic lesions. Currently, there are already commercial systems, such as the Courage + Khazaka Corneometer and Mexameter that measure skin capacitance and optical reflectance, for conveniently quantifying the status of skin barrier function and erythema of skin. Despite numerous comparisons of the Courage + Khazaka system with the PASI scoring system, they are rarely compared on parity with diffuse reflectance spectroscopy (DRS) based systems. In this study, we employed a custom-built DRS system shown to be able to determine the skin water-protein binding status and the hemoglobin concentration, and we performed cross-validation of the DRS measurement results with the readings derived from the Corneometer and Mexameter as well as a portion of the PASI scores. Our results revealed that the erythema readings from the Mexameter were a good representation of skin oxygenated hemoglobin but not the deoxygenated hemoglobin. On the other hand, the dermatologists recruited in this study were inclined to rate higher scores on the “erythema” category as skin’s deoxygenated hemoglobin level was higher. Thus, the Mexameter derived erythema readings may not be coherent with the PASI erythema scores. Further, the Corneometer derived skin capacitance readings were well correlated to the PASI “desquamation” and “thickness” scores, while the PASI “desquamation” evaluation was a dominating factor contributing to the DRS deduced water-protein binding status. We conclude that the DRS method could be a valuable addition to existing skin capacitance/reflectance measurement systems and the PASI scoring system toward achieving a more efficient and objective clinical psoriasis vulgaris severity evaluation.
The prevalence rate of neonatal jaundice can reach 80%, of which 5% may develop dangerous hemolytic jaundice. The blood test for obtaining bilirubin and hemoglobin concentration is the gold standard for diagnosing hemolytic jaundice; however, frequently drawing blood from jaundice neonates for the screening purpose is not practical. We have developed a handheld diffuse reflectance spectroscopy system to noninvasively determine the bilirubin and hemoglobin levels in neonates. Our study showed that the correlation coefficients were 0.95 and 0.80 for bilirubin and hemoglobin between the results from the blood tests and our handheld system, respectively. This handheld system could be an effective tool for screening hemolytic jaundice.
Psoriasis affects more than 125 million people worldwide, and the diagnosis and treatment efficacy evaluation of the disease mainly rely on clinical assessments that could be subjective. Our previous study showed that the skin erythema level could be quantified using diffuse reflectance spectroscopy (DRS), and the hemoglobin concentration of most psoriatic lesion was higher than that of its adjacent uninvolved skin. While the compromised epidermal barrier function has been taken as the major cause of clinical manifestation of skin dryness and inflammation of psoriasis, very few methods can be used to effectively evaluate this function. In this study, we investigate the near infrared spectroscopic features of psoriatic (n = 21) and normal (n = 21) skin that could link to the epidermal barrier function. From the DRS measurements, it was found that the water bonding status and light scattering properties of psoriasis are significantly different from those of uninvolved or normal skin. The connection between these parameters to the epidermal barrier function and morphology will be discussed. Our results suggest that objective evaluation of epidermal barrier function of psoriasis could be achieved using a simple DRS system.
Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.