Fipronil, which targets GABAA receptors (GABAARs), is the first phenylpyrazole insecticide widely used in crop protection and public hygiene. However, its high toxicity on fishes greatly limited its applications. In the present study, a series of computational methods including homology modeling, docking, and molecular dynamics simulation studies were integrated to explore the binding difference of fipronil with GABAARs from fruitfly and zebrafish systems. It was found that, in the zebrafish system, the H-bond between 6'Thr and fipronil exerted key effects on the recognition of fipronil, which was absent in the fruitfly system. On the other hand, in the fruitfly system, strong electrostatic interaction between 2'Ala and fipronil was favorable to the binding of fipronil but detrimental to the binding in the zebrafish system. These findings marked the binding difference of fipronil with different GABAARs, which might be helpful in designing selective insecticides against pests instead of fishes.
HIV‐1 mutants escaping from HLA‐A‐ or HLA‐B‐restricted CTL have been well studied, but those from HLA‐C‐restricted CTL have not. Therefore we investigated the ability of HLA‐C‐restricted CTL to select HIV‐1 escape mutants. In the present study, we identified two novel HLA‐Cw*1202‐restricted Pol‐specific CTL epitopes (Pol328‐9 and Pol463‐10). CTL specific for these epitopes were detected in 25–40% of chronically HIV‐1‐infected HLA‐Cw*1202+ individuals and had strong abilities to kill HIV‐1‐infected cells and to suppress HIV‐1 replication in vitro, suggesting that these CTL may have the ability to effectively control HIV‐1 in some HLA‐Cw*1202+ individuals. Sequence analysis of these epitopes showed that a V‐to‐A substitution at the 9th position (V9A) of Pol 463‐10 was significantly associated with the HLA‐Cw*1202 allele and that the V9A mutant was slowly selected in the HLA‐Cw*1202+ individuals. Pol 463‐10‐specific CTL failed both to kill the V9A virus‐infected cells and to suppress replication of the V9A mutant. These results indicate that the V9A mutation was selected as an escape mutant by the Pol463‐10‐specific CTL. The present study strongly suggests that some HLA‐C‐restricted CTL have a strong ability to suppress HIV‐1 replication so that they can select HIV escape mutants as in the case of HLA‐A‐restricted or HLA‐B‐restricted CTL.
The exact residues within severe acute respiratory syndrome coronavirus (SARS-CoV) S1 protein and its receptor, human ACE2, involved in their interaction still remain largely undetermined. Identification of exact amino acid residues that are crucial for the interaction of S1 with ACE2 could provide working hypotheses for experimental studies and might be helpful for the development of antiviral inhibitor. In this paper, a molecular docking model of SARS-CoV S1 protein in complex with human ACE2 was constructed. The interacting residue pairs within this complex model and their contact types were also identified. Our model, supported by significant biochemical evidence, suggested receptor-binding residues were concentrated in two segments of S1 protein. In contrast, the interfacial residues in ACE2, though close to each other in tertiary structure, were found to be widely scattered in the primary sequence. In particular, the S1 residue ARG453 and ACE2 residue LYS341 might be the key residues in the complex formation.
Protein-glutaminase plays a significant role in future
food (e.g.,
plant-based meat) processing as a result of its ability to improve
the solubility, foaming, emulsifying, and gel properties of plant-based
proteins. However, poor stability, activity, high pressure, and high
shear processing environments hinder its application. Therefore, we
developed an application-oriented method isothermal compressibility
perturbation engineering strategy to improve enzyme performance by
simulating the high-pressure environment. The best variant with remarkable
improvement in specific activity and half-time, N16M/Q21H/T113E, exhibited
a 4.28-fold increase compared to the wild type in specific activity
(117.18 units/mg) and a 1.23-fold increase in half-time (472 min),
as one of the highest comprehensive performances ever reported. The
solubility of the soy protein isolate deaminated by the N16M/Q21H/T113E
mutant was 55.74% higher than that deaminated by the wild type, with
a tinier particle size and coarser texture. Overall, this strategy
has the potential to improve the functional performance of enzymes
under complex food processing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.