A gold-catalyzed intramolecular tandem cyclization of indole-ynamide affords tetracyclic spirocyclic pyrrolidinoindoline bearing an all-carbon quaternary stereocentre in a single step; however, when the reaction was carried out in the presence of BF3 ⋅Et2 O, the corresponding tricyclic spirocyclic pyrrolidinoindoline-based enones are produced through a key 1,5-hydride shift. The developed chemistry provides a diastereoselective and straightforward entry to structurally diverse polycylic pyrrolidinoindolines from indole-ynamides in one-pot reactions under mild conditions.
Non-opioid therapeutics for the treatment of neuropathic pain are urgently needed to address the ongoing opioid crisis. Peptides from cone snail venoms have served as invaluable molecules to target key pain-related receptors but can suffer from unfavorable physicochemical properties, which limit their therapeutic potential. In this work, we developed conformationally constrained α-RgIA analogues with high potency, receptor selectivity, and enhanced human serum stability to target the human α9α10 nicotinic acetylcholine receptor. The key lactam linkage introduced in α-RgIA fixed the favored globular conformation and suppressed disulfide scrambling. The NMR structure of the macrocyclic peptide overlays well with that of α-RgIA4, demonstrating that the cyclization does not perturb the overall conformation of backbone and key side-chain residues. Finally, a molecular docking model was used to rationalize the selective binding between a macrocyclic analogue and the α9α10 nicotinic acetylcholine receptor. These conformationally constrained antagonists are therefore promising candidates for antinociceptive therapeutic intervention.
Insulin has been a life-saving drug for millions of people
with
diabetes. However, several challenges exist which limit therapeutic
benefits and reduce patient convenience. One key challenge is the
fibrillation propensity, which necessitates refrigeration for storage.
To address this limitation, we chemically synthesized and evaluated
a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized
SCS-Ins showed enhanced serum stability and aggregation resistance
while retaining bioactivity compared with native insulin.
A novel method for the concise synthesis of cyclohepta [b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Metal-mediated cyclizations are important transformations in a natural product total synthesis. The Pauson-Khand reaction, particularly powerful for establishing cyclopentenone-containing structures, is distinguished as one of the most attractive annulation processes routinely employed in synthesis campaigns. This review covers Co, Rh, and Pd catalyzed Pauson-Khand reaction and summarizes its strategic applications in total syntheses of structurally complex natural products in the last five years. Additionally, the hetero-Pauson-Khand reaction in the synthesis of heterocycles will also be discussed. Focusing on the panorama of organic synthesis, this review highlights the strategically developed Pauson-Khand reaction in fulfilling total synthetic tasks and its synthetic attractiveness is aimed to be illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.