We report a long-term outcome on a large cohort of Japanese patients with Parkinson's disease (PD). A total of 1,768 (793 men, 975 women) consecutive patients visited our clinic from 1 January 1989 to 31 December 2002. Among them, 1,183 patients (531 men, 652 women) came to our clinic within 5 years from the onset of disease and at the Hoehn & Yahr Stage III or less at the first visit. Long-term outcome was evaluated in this subcohort of the patients. We examined the duration to reach Stage III, IV, and V, and the duration to develop wearing off and dyskinesia. Time to reach Stage III was slightly but significantly shorter in women, in that 23.8% of men and 35.3% of women reached Stage III by the end of the 5th year; 49.7% of men and 63.3% of women reached Stage III by the end of the 10th year, and 88.9% of men and 79.9% of women by the end of the 15th year (P < 0.001). Also, durations to develop wearing off and dyskinesia were shorter in women compared to men. These data suggest that the disease progression may be slightly faster for women. Young-onset patients showed significantly longer duration to reach Stage III, IV, and V but shorter duration to develop wearing off and dyskinesia. Not many studies are available in the literature on the long-term outcome of PD, and our data would be useful as a reference.
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.
The ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase Parkin, two gene products associated with young-onset Parkinson's disease (PD), participate in mitochondrial quality control. The phosphorylation of mitochondrial polyUb by PINK1, which is activated in a mitochondrial membrane potential (ΔΨm)-dependent manner, facilitates the mitochondrial translocation and concomitant enzymatic activation of Parkin, leading to the clearance of phospho-polyUb-tagged mitochondria via mitophagy. Thus, Ub phosphorylation is a key event in PINK1-Parkin-mediated mitophagy. Here, we examined the role of phospho-Ub signaling in the pathogenesis of PD using fly PD models, human brain tissue and dopaminergic neurons derived from induced pluripotent stem cells (iPSCs) containing Parkin or PINK1 mutations, as well as normal controls. We report that phospho-Ub signaling is highly conserved between humans and Drosophila, and that phospho-Ub signaling and the relocation of axonal mitochondria upon ΔΨm reduction are indeed compromised in human dopaminergic neurons containing Parkin or PINK1 mutations. Moreover, phospho-Ub signaling is prominent in tyrosine hydroxylase-positive neurons compared with tyrosine hydroxylase-negative neurons, suggesting that PINK1-Parkin signaling is more required for dopaminergic neurons. These results shed light on the particular vulnerability of dopaminergic neurons to mitochondrial stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.