Blockchain-IIoT integration into industrial processes promises greater security, transparency, and traceability. However, this advancement faces significant storage and scalability issues with existing blockchain technologies. Each peer in the blockchain network maintains a full copy of the ledger which is updated through consensus. This full replication approach places a burden on the storage space of the peers and would quickly outstrip the storage capacity of resource-constrained IIoT devices. Various solutions utilizing compression, summarization or different storage schemes have been proposed in literature. The use of cloud resources for blockchain storage has been extensively studied in recent years. Nonetheless, block selection remains a substantial challenge associated with cloud resources and blockchain integration. This paper proposes a deep reinforcement learning (DRL) approach as an alternative to solving the block selection problem, which involves identifying the blocks to be transferred to the cloud. We propose a DRL approach to solve our problem by converting the multi-objective optimization of block selection into a Markov decision process (MDP). We design a simulated blockchain environment for training and testing our proposed DRL approach. We utilize two DRL algorithms, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO) to solve the block selection problem and analyze their performance gains. PPO and A2C achieve 47.8% and 42.9% storage reduction on the blockchain peer compared to the full replication approach of conventional blockchain systems. The slowest DRL algorithm, A2C, achieves a run-time 7.2 times shorter than the benchmark evolutionary algorithms used in earlier works, which validates the gains introduced by the DRL algorithms. The simulation results further show that our DRL algorithms provide an adaptive and dynamic solution to the time-sensitive blockchain-IIoT environment.
Since the inception of blockchain-based cryptocurrencies, researchers have been fascinated with the idea of integrating blockchain technology into other fields, such as health and manufacturing. Despite the benefits of blockchain, which include immutability, transparency, and traceability, certain issues that limit its integration with IIoT still linger. One of these prominent problems is the storage inefficiency of the blockchain. Due to the append-only nature of the blockchain, the growth of the blockchain ledger inevitably leads to high storage requirements for blockchain peers. This poses a challenge for its integration with the IIoT, where high volumes of data are generated at a relatively faster rate than in applications such as financial systems. Therefore, there is a need for blockchain architectures that deal effectively with the rapid growth of the blockchain ledger. This paper discusses the problem of storage inefficiency in existing blockchain systems, how this affects their scalability, and the challenges that this poses to their integration with IIoT. This paper explores existing solutions for improving the storage efficiency of blockchain–IIoT systems, classifying these proposed solutions according to their approaches and providing insight into their effectiveness through a detailed comparative analysis and examination of their long-term sustainability. Potential directions for future research on the enhancement of storage efficiency in blockchain–IIoT systems are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.