Benzylisoquinoline alkaloids are one of the most important secondary metabolite groups, and include the economically important analgesic morphine and the antimicrobial agent berberine. To improve the production of these alkaloids, we investigated the effect of the overexpression of putative rate-limiting step enzymes in benzylisoquinoline alkaloid biosynthesis. We introduced two O-methyltransferase [Coptis japonica norcoclaurine 6-O-methyltransferase (6OMT) and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT)] expression vectors into cultured California poppy cells to avoid the gene silencing effect of endogenous genes. We established 20 independent lines for 6OMT transformants and 15 independent lines for 4'OMT transformants. HPLC/liquid chromatography-mass spectrometry (LC-MS) analysis revealed that the overexpression of C. japonica 6OMT was associated with an average alkaloid content 7.5 times greater than that in the wild type, whereas the overexpression of C. japonica 4'OMT had only a marginal effect. Further characterization of 6OMT in California poppy cells indicated that a 6OMT-specific gene is missing and 4OMT catalyzes the 6OMT reaction with low activity in California poppy, which supports the notion that the 6OMT reaction is important for alkaloid biosynthesis in this plant species. We discuss the importance of 6OMT in benzylisoquinoline alkaloid biosynthesis and the potential for using a rate-limiting step gene to improve alkaloid production.
Reticuline is a key compound in the biosynthetic pathway for isoquinoline alkaloids in plants, which include morphine, codeine and berberine. We established cultured California poppy (Eschscholzia californica) cells, in which berberine bridge enzyme (BBE) was knocked down by RNA interference, to accumulate the important key intermediate reticuline. Both BBE mRNA accumulation and enzyme activity were effectively suppressed in transgenic cells. In these transgenic cells, end-products of isoquinoline alkaloid biosynthesis, such as sanguinarine, were considerably reduced and reticuline was accumulated at a maximum level of 310 mug/g-fresh weight. In addition, 1 g-fresh weight of these cells secreted significant amounts of reticuline into the medium, with a maximum level of 6 mg/20 mL culture medium. These cells also produced a methylated derivative of reticuline, laudanine, which could scarcely be detected in control cells. We discuss the potential application of RNAi technology in metabolic modification and the flexibility of plant secondary metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.