Although the aggregation of amyloid-β peptide (Aβ) clearly plays a central role in the pathogenesis of Alzheimer’s disease (AD), endosomal traffic dysfunction is considered to precede Aβ aggregation and trigger AD pathogenesis. A body of evidence suggests that the β-carboxyl-terminal fragment (βCTF) of amyloid-β precursor protein (APP), which is the direct precursor of Aβ, accumulates in endosomes and causes vesicular traffic impairment. However, the mechanism underlying this impairment remains unclear. Here we identified TMEM30A as a candidate partner for βCTF. TMEM30A is a subcomponent of lipid flippase that translocates phospholipids from the outer to the inner leaflet of the lipid bilayer. TMEM30A physically interacts with βCTF in endosomes and may impair vesicular traffic, leading to abnormally enlarged endosomes. APP traffic is also concomitantly impaired, resulting in the accumulation of APP-CTFs, including βCTF. In addition, we found that expressed BACE1 accumulated in enlarged endosomes and increased Aβ production. Our data suggested that TMEM30A is involved in βCTF-dependent endosome abnormalities that are related to Aβ overproduction.
Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer’s disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-β (Aβ), which accumulates in the patient brain. The “amyloid hypothesis” based therapy that places the aggregation and toxicity of Aβ at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aβ is produced from a type-I transmembrane protein, Aβ precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the AD patient’s brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the “outside” of the neuron, but C99 accumulation might explain the toxicity on the “inside” of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.