We report a new molecular-design principle for creating double-gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol À1 in DMSO-d 6 solution (DFT prediction for a model compound in the vacuum: 90-100 kJ mol À1 ). Due to the restricted rotation, the amphiphiles feature "double" atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co-organize into Ia " 3d-type bicontinuous cubic liquid-crystalline mesophases through nanosegregation of the ionic and non-ionic parts. Considering the intrinsic characteristic of Ia " 3d-type bicontinuous cubic structures that they are composed of intertwined right-and left-handed single gyroids, we propose that the simultaneous presence of both R-and S-atropisomers is an important contributor to the formation of double-gyroid structures.
We report a new molecular‐design principle for creating double‐gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol−1 in DMSO‐d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol−1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co‐organize into Ia3‾d
‐type bicontinuous cubic liquid‐crystalline mesophases through nanosegregation of the ionic and non‐ionic parts. Considering the intrinsic characteristic of Ia3‾d
‐type bicontinuous cubic structures that they are composed of intertwined right‐ and left‐handed single gyroids, we propose that the simultaneous presence of both R‐ and S‐atropisomers is an important contributor to the formation of double‐gyroid structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.