Ethnopharmacological relevanceIn Austria, like in most Western countries, knowledge about traditional medicinal plants is becoming scarce. Searching the literature concerning Austria's ethnomedicine reveals its scant scientific exploration.Aiming to substantiate the potential of medicinal plants traditionally used in Austria, 63 plant species or genera with claimed anti-inflammatory properties listed in the VOLKSMED database were assessed for their in vitro anti-inflammatory activity.Material and methods71 herbal drugs from 63 plant species or genera were extracted using solvents of varying polarities and subsequently depleted from the bulk constituents, chlorophylls and tannins to avoid possible interferences with the assays. The obtained 257 extracts were assessed for their in vitro anti-inflammatory activity. The expression of the inflammatory mediators E-selectin and interleukin-8 (IL-8), induced by the inflammatory stimuli tumor necrosis factor alpha (TNF-α) and the bacterial product lipopolysaccharide (LPS) was measured in endothelial cells. The potential of the extracts to activate the nuclear factors PPARα and PPARγ and to inhibit TNF-α-induced activation of the nuclear factor-kappa B (NF-κB) in HEK293 cells was determined by luciferase reporter gene assays.ResultsIn total, extracts from 67 of the 71 assessed herbal drugs revealed anti-inflammatory activity in the applied in vitro test systems. Thereby, 30 could downregulate E-selectin or IL-8 gene expression, 28 were strong activators of PPARα or PPARγ (inducing activation of more than 2-fold at a concentration of 10 µg/mL) and 21 evoked a strong inhibition of NF-κB (inhibition of more than 80% at 10 µg/mL).ConclusionOur research supports the efficacy of herbal drugs reported in Austrian folk medicine used for ailments associated with inflammatory processes. Hence, an ethnopharmacological screening approach is a useful tool for the discovery of new drug leads.
BackgroundPeroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.MethodsWe used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists.ResultsThe natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain.ConclusionWe identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo.General significanceThis observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine.
Peroxisome proliferator-activated receptor gamma (PPAR␥) agonists are used for the treatment of type 2 diabetes and metabolic syndrome. However, the currently used PPAR␥ agonists display serious side effects, which has led to a great interest in the discovery of novel ligands with favorable properties. The aim of our study was to identify new PPAR␥ agonists by a PPAR␥ pharmacophore-based virtual screening of 3D natural product libraries. This in silico approach led to the identification of several neolignans predicted to bind the receptor ligand binding domain (LBD). To confirm this prediction, the neolignans dieugenol, tetrahydrodieugenol, and magnolol were isolated from the respective natural source or synthesized and subsequently tested for PPAR␥ receptor binding. The neolignans bound to the PPAR␥ LBD with EC 50 values in the nanomolar range, exhibiting a binding pattern highly similar to the clinically used agonist pioglitazone. In intact cells, dieugenol and tetrahydrodieugenol selectively activated human PPAR␥-mediated, but not human PPAR␣-or -/␦-mediated luciferase reporter expression, with a pattern suggesting partial PPAR␥ agonism. The coactivator recruitment study also demonstrated partial agonism of the tested neolignans. Dieugenol, tetrahydrodieugenol, and magnolol but not the structurally related eugenol induced 3T3-L1 preadipocyte differentiation, confirming effectiveness in a cell model with endogenous PPAR␥ expression. In conclusion, we identified neolignans as novel ligands for PPAR␥, which exhibited interesting activation profiles, recommending them as potential pharmaceutical leads or dietary supplements.Western lifestyle with a high intake of simple sugars, saturated fat, and physical inactivity promotes pathologic conditions such as type 2 diabetes, obesity, and metabolic syndrome, which are currently taking a devastating epidemical spread worldwide. Compounds that are activating PPAR␥ may help to fight these pathological conditions (Cho and Momose, 2008).PPARs are ligand-activated transcription factors belonging to the nuclear receptor superfamily, and their main function relates to the regulation of genes involved in glucose and lipid metabolism (Tenenbaum et al., 2003;Desvergne et al., 2006). Three isoforms of this nuclear receptor have been identified so far: PPAR␣, PPAR/␦, and PPAR␥. PPAR␣ is highly expressed in skeletal muscle, liver, kidney, heart, and the vascular wall, and it was shown to be mainly involved in the regulation of lipid catabolism (Fruchart, 2009). PPAR␥ is
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.