Membrane proteins are responsible for the communication between cells and their environments. They are indispensable to the expression of life phenomena and also implicated in a number of diseases. Nevertheless, the studies on membrane proteins are far behind those on water-soluble proteins, primarily due to their low structural stability. Introduction of mutations can enhance their thermostability and stability in detergents, but the stabilizing mutations are currently identified by experiments. The recently reported computational methods suffer such drawbacks as the exploration of only limited mutational space and the empiricism whose results are difficult to physically interpret. Here we develop a rapid method that allows us to treat all of the possible mutations. It employs a free-energy function (FEF) that takes into account the translational entropy of hydrocarbon groups within the lipid bilayer as well as the protein intramolecular hydrogen bonding. The method is illustrated for the adenosine A2a receptor whose wild-type structure is known and utilized. We propose a reliable strategy of finding key residues to be mutated and selecting their mutations, which will lead to considerably higher stability. Representative single mutants predicted to be stabilizing or destabilizing were experimentally examined and the success rate was found to be remarkably high. The melting temperature Tm for two of them was substantially higher than that of the wild type. A double mutant with even higher Tm was also obtained. Our FEF captures the essential physics of the stability changes upon mutations.
The affinity of a
ligand for a receptor on the cell surface will
be influenced by the membrane composition. Herein, we evaluated the
effects of differences in membrane fluidity, controlled by phospholipid
composition, on the ligand binding activity of the G protein-coupled
receptor human serotonin 2B. Using Nanodisc technology to control
membrane properties, we performed biophysical analysis and employed
molecular dynamics simulations to demonstrate that increased membrane
fluidity shifted the equilibrium toward an active form of the receptor.
Our quantitative study will enable development of more realistic in vitro drug discovery assays involving membrane-bound
proteins such as G protein-coupled receptors.
Human reticulocalbin-1 (hRCN1) has six EF-hand motifs and binds Ca(2+). hRCN1 is a member of the CREC family localized in the secretory pathway, and its cellular function remains unclear. In this study, we established a new bacterial expression and purification procedure for hRCN1. We observed that hRCN1 binds Ca(2+) in a cooperative manner and the Ca(2+) binding caused an increase in the α-helix content of hRCN1. On the other hand, hRCN1 did not change the structure with Mg(2+) loading. hRCN1 is a monomeric protein, and its overall structure became more compact upon Ca(2+) binding, as revealed by gel-filtration column chromatography and small-angle X-ray scattering. This is the first report of conformational changes in the CREC family upon Ca(2+) binding. Our data suggest that CREC family member interactions with target proteins are regulated in the secretory pathway by conformational changes upon Ca(2+) binding.
Calmodulin (CaM) is a Ca(2+)-binding protein that regulates a number of fundamental cellular activities. Nicotiana tabacum CaM (NtCaM) comprises 13 genes classified into three types, among which gene expression and target enzyme activation differ. We performed Fourier-transform infrared spectroscopy to compare the secondary and coordination structures of Mg(2+) and Ca(2+) among NtCaM1, NtCaM3, and NtCaM13 as representatives of the three types of NtCaMs. Data suggested that NtCaM13 has a different secondary structure due to the weak β-strand bands and the weak 1661 cm(-1) band. Coordination structures of Mg(2+) of NtCaM3 and NtCaM13 were similar but different from that of NtCaM1, while the Ca(2+)-binding manner was similar among the three CaMs. The amplitude differences of the band at 1554-1550 cm(-1) obtained by second-derivative spectra indicated that the intensity change of the band of NtCaM13 was smaller in response to [Ca(2+)] increases under low [Ca(2+)] conditions than were those of NtCaM1 and NtCaM3, while the intensity reached the same level under high [Ca(2+)]. Therefore, NtCaM13 has a characteristic secondary structure and specific Mg(2+)-binding manner and needs higher [Ca(2+)] for bidentate Ca(2+) coordination of 12th Glu in EF-hand motifs. The Ca(2+)-binding mechanisms of the EF-hand motifs of the three CaMs are similar; however, the cation-dependent conformational change in NtCaM13 is unique among the three NtCaMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.