A group of 25 agencies from Canada and the United States conducted a major offshore burn experiment near Newfoundland, Canada. Two lots of oil, about 50 cubic meters (50 tons) each, were released into a fireproof boom. Each burn lasted over an hour and was monitored for emissions and physical parameters. Over 200 sensors or samplers were employed to yield data on over 2000 parameters or substances. The operation was extensive; more than 20 vessels, 7 aircraft and 230 people were involved in the operation at sea. The quantitative analytical data show that the emissions from this in-situ oil fire were less than expected. All compounds and parameters measured more than about 150 meters from the fire were below occupational health exposure levels; very little was detected beyond 500 meters. Pollutants were found to be at lower values in the Newfoundland offshore burn than they were in previous pan tests. Polyaromatic hydrocarbons (PAHs) were found to be lower in the soot than in the starting oil and were consumed by the fire to a large degree. Particulates in the air were measured by several means and found to be of concern only up to 150 meters downwind at sea level. Combustion gases including carbon dioxide, sulphur dioxide, and carbon monoxide did not reach levels of concern. Volatile organic compounds (VOCs) were abundant, however their concentrations were less than emitted from the nonburning spill. Over 50 compounds were quantified, several at levels of concern up to 150 meters downwind. Water under the burns was analyzed; no compounds of concern could be found at the detection level of the methods employed. Toxicity tests performed on this water did not show any adverse effect. The burn residue was analyzed for the same compounds as the air samples. Overall, indications from these burn trials are that 150 meters or farther from the burn source emissions from in-situ burning are lower than health criteria levels.
Laboratory effectiveness tests have been developed for four classes of oil pill treating agents: solidifiers, demulsifying agents, surface-washing agents and dispersants. Several treating agent products in these four categories have been tested for effectiveness. The aquatic toxicity of these agents is an important factor and has been measured for many products. These results are presented. Solidifiers or gelling agents solidify oil. Test results show that solidifiers require etween 16% and 200% of agent by weight compared to the oil. De-emulsifying agents or emulsion breakers prevent the formation of or break water-in-oil emulsions. Surfactant-containing materials are of two types, surface-washing agents and dispersants. Testing has shown that effectiveness is orthogonal for these two types of treating agents. Tests of surface washing agents show that only a few agents have effectiveness of 25 to 55%, where this is defined as the percentage of oil removed from a test surface. Dispersant effectiveness results using the “swirling flask” test are reported. Heavy oils show effectiveness values of about 1%, medium crudes of about 10%, light crude oils of about 30% and very light oils of about 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.