The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. alpha-Globin mRNA stability is dictated by sequences in the 3' untranslated region (3'UTR) which form a specific ribonucleoprotein complex (alpha-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, alphaCP1 and alphaCP2. Using an in vitro-transcribed and polyadenylated alpha-globin 3'UTR, we have devised an in vitro mRNA decay assay which reproduces the alpha-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the alpha-complex by sequestration of alphaCP1 and alphaCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the alpha-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between alphaCP1 and alphaCP2 with PABP suggests that the alpha-complex can directly interact with PABP. Therefore, the alpha-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.
Our laboratory has previously demonstrated that increased malignancy of several histological types of human and animal tumours is associated with increases in their cathepsin B activity, particularly cathepsin B activity associated with plasma-membrane/endosomal vesicles or shed vesicles. Here we report that cathepsin B from normal or tumour tissues degrades purified extracellular-matrix components, type IV collagen, laminin and fibronectin, at both acid pH and neutral pH. The number and sizes of degradation products were analysed by SDS/PAGE. Cathepsin B from both sources exhibited similar activities towards, and similar patterns of cleavage of, the extracellular-matrix proteins. At neutral pH, cathepsin B from both sources appeared to undergo autodegradation, a process that was decreased in the presence of alternative substrates such as the extracellular-matrix proteins. Cathepsin B readily degraded type IV collagen at 25 degrees C, indicating activity towards native type IV collagen. Fibronectin degradation products of 100-200 kDa and of 18 and 22 kDa were observed. A single 70 kDa fragment was released from laminin under non-reducing conditions and multiple fragments ranging from 45 to 200 kDa under reducing conditions. These results suggest that cathepsin B at or near the surface of malignant tumour cells may play a functional role in the focal dissolution of extracellular matrices.
Lysosomal cathepsin B has been implicated in parasitic, inflammatory and neoplastic diseases. Most of these pathologies suggest a role for cathepsin B outside the cells, although the origin of extracellular active enzyme is not well defined. The activity of extracellular cathepsin B is difficult to assess because of the presence of inhibitors and inactivation of the enzyme by oxidizing agents. Therefore, we have developed a continuous assay for measurement of cathepsin B activity produced pericellularly by living cells. The kinetic rate of Z-Arg-Arg-NHMec conversion was monitored and the assay optimized for enzyme stability, cell viability and sensitivity. To validate the assay, we determined that human liver cathepsin B was stable and active under the conditions of the assay and its activity could be inhibited by the selective epoxide derivative CA-074. Via this assay, we were able to demonstrate that active cathepsin B was secreted pericellularly by viable cells. Both preneoplastic and malignant cells secreted active cathepsin B. Pretreatment of cells with the membranepermeant proinhibitor CA-074Me completely abolished pericellular and total cathepsin B activity whereas pretreatment with the active drug CA-074 had no effect. Immunoprecipitation and immunoblotting experiments suggested that the active enzyme species was 31-kDa single-chain cathepsin B. Exocytosis of cathepsin B was not related to secretion of proenzyme or secretion from mature lysosomes. Our results suggest an alternative pathway for exocytosis of active cathepsin B.
Cathepsin B was purified from normal human liver and several human tumour tissues and partially characterized. Three forms of cathepsin B, with molecular masses of 25 kDa, 26 kDa (the two appearing as a doublet) and 30 kDa, were detected in SDS/polyacrylamide gels. The 25-26 kDa doublet was associated with the fractions from tumours and normal liver containing the highest cathepsin B activity. Cathepsin B from both sources showed similar pH optima. Both normal liver and tumour cathepsin B exhibited similar kinetics against selected synthetic substrates. At neutral pH and 24 degrees C, cathepsin B from both normal liver and tumour exhibited a lower Km and a higher kcat./Km than at pH 6.0. Their inhibitory profiles against synthetic inhibitors were also similar. Immunological studies with a monospecific antibody against the mature double-chain form of human liver cathepsin B and an antibody against a cathepsin B-derived synthetic peptide established the immunological similarity of liver and tumour enzymes. The N-terminal sequences of the 25 kDa and 26 kDa forms were identical with that of the heavy chain of the mature double-chain form of human cathepsin B, whereas the N-terminal sequence of the 30 kDa species was identical with that of the single-chain form of human cathepsin B. Treatment of the double-chain form of cathepsin B from normal liver and tumours with the endoglycosidase peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase converted the 26 kDa form into 25 kDa in SDS/polyacrylamide gels, suggesting that cathepsin B may exist as both glycosylated and unglycosylated forms. Our results, in contrast with those reported earlier for mouse cathepsin B, indicate that human liver and tumour cathepsin B are similar.
Lysosomal proteases, although tightly regulated under physiological conditions, are known to contribute to cell injury after various forms of tissue ischemia have occurred. Because cathepsin B is a prominent lysosomal protease found in brain parenchyma, the authors hypothesized that it may contribute to neuronal cell death after focal cerebral ischemia. The authors measured the expression and spatial distribution of cathepsin B within the ischemic brain in 43 animals by means of immunohistochemical analysis in a rat model of transient middle cerebral artery (MCA) occlusion. Cathepsin B activity was also measured within specific ischemic brain regions by using an in vitro assay (22 animals). In addition, the authors tested the therapeutic effect of preischemic intraventricular administration of stefin A, a cysteine protease inhibitor, on the volume of cerebral infarction after transient MCA occlusion (15 animals). Increased cathepsin B immunoreactivity was detected exclusively within the ischemic neurons after 2 hours of reperfusion following a 2-hour MCA occlusion. Cathepsin B immunolocalization in the ischemic region decreased by 24 hours of reperfusion, but then increased by 48 hours of reperfusion because the infarct was infiltrated by inflammatory cells. Increased immunolocalization of cathepsin B in the inflammatory cells located in the necrotic infarct core continued through 7 days of reperfusion. Cathepsin B enzymatic activity was significantly increased in the ischemic tissue at 2, 8, and 48 hours, but not at 24 hours of reperfusion after 2 hours of MCA occlusion. Continuous intraventricular infusion of stefin A, before 2 hours of MCA occlusion (15 animals), significantly reduced infarct volume compared with control animals (12 animals): the percentage of hemispheric infarct volume was 20+/-3.9 compared with 33+/-3.5 (standard error of the mean; p = 0.025). These data indicate that neuronal cathepsin B undergoes increased expression and activation within 2 hours of reperfusion after a 2-hour MCA occlusion and may be a mechanism contributing to neuronal cell death. Intraventricular infusion of stefin A, an inhibitor of cathepsin B, significantly reduces cerebral infarct volume in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.