Clinical-scale production of NK cells is efficient and can be performed under GMPs. The purified NK cell product results in high NK cell purity with minimal contamination by T cells, monocytes, and B cells, but it requires more time for processing and results in a lower NK cell recovery when compared to NK cell enrichment with CD3 cell depletion alone. Additional laboratory studies and results from clinical trials will identify the best source and type of NK cell product.
Engineering donor T lymphocytes with inducible ‘suicide genes’, such as herpes simplex virus thymidine kinase, has potential to improve safety and efficacy in allogeneic transplantation by facilitating management of graft-versus-host disease. Elective administration of a relatively nontoxic pro-drug would induce in vivo negative selection of engineered lymphocytes specifically, sparing other donor hematopoietic cells. The engineered cells must retain immunologic function, and undergo negative selection in response to clinically attainable plasma concentrations of pro-drug. The cell engineering process itself, typically involving activation, transduction, ex vivo expansion, and selection, must produce clinically useful numbers of genetically modified cells at high purity. We discuss development of a cellular engineering manufacturing process that yields transduced, expanded T lymphocytes meeting these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.