There is much variability between individuals in the response to inhaled toxins, but it is not known why certain people develop disease when challenged with environmental agents and others remain healthy. To address this, we investigated whether TLR4 (encoding the toll-like receptor-4), which has been shown to affect lipopolysaccharide (LPS) responsiveness in mice, underlies the variability in airway responsiveness to inhaled LPS in humans. Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) affecting the extracellular domain of the TLR4 receptor are associated with a blunted response to inhaled LPS in humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signalling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress.
The toll-like receptor 2 (TLR2) has gained importance as a major mammalian receptor for lipoproteins derived from the cell wall of a variety of bacteria, such as Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans. We were interested in identifying mutations in the TLR2 gene that might prove to be associated with altered susceptibility to septic shock. We performed a mutation screen of the TLR2 gene using single-stranded conformational polymorphism in 110 normal, healthy study subjects and detected an Arg753Gln mutation in three individuals. No other missense mutations were detected in the TLR2 open reading frame. Functional studies demonstrate that the Arg753Gln polymorphism, in comparison to the wild-type TLR2 gene, is significantly less responsive to bacterial peptides derived from B. burgdorferi and T. pallidum. In a septic shock population, the Arg753Gln TLR2 polymorphism occurred in 2 out of 91 septic patients. More importantly, both of the subjects with the TLR2 Arg753Gln polymorphism had staphylococcal infections. These findings suggest that a mutation in the TLR2 gene may predispose individuals to lifethreatening bacterial infections.Microbial pathogens are a major health concern worldwide. Invasion of the host by microbial pathogens causes the activation of the innate immune response, which acts as a first line of defense against pathogenic bacteria. The innate immune response triggers a sequence of events that results in the production and secretion of cytokines and chemokines, activation of macrophages and monocytes, and in some cases initiation of adaptive immunity (10).The toll receptors appear to be very important in initiating the innate immune response. C3H/HeJ mice which have a mutation in the toll-like receptor 4 (TLR4) gene (Pro712His) and C57BL6/10ScCr mice which have a deletion of TLR4 are both hyporesponsive to lipopolysaccharide (LPS) (12). The TLR4 mutation in C3H/HeJ mice was the first direct proof for identifying TLR4 as a major LPS receptor in mammals. Subsequently TLR4 Ϫ/Ϫ mice were shown to be LPS hyporesponsive as well (6). Binding of LPS to TLR4, via a complex involving CD14 as well as MD-2, is thought to initiate a signaling cascade that involves several kinases and accessory molecules such as MyD88 and IRAK, leading eventually to a nuclear translocation of transcription factors NF-B and AP-1 (14). The binding of these transcription factors is responsible for initiating cytokine and chemokine expression subsequent to LPS exposure. Recently, mutations in the TLR4 receptor at residues 299 and 399 were shown to be associated with hyporesponsiveness to inhaled endotoxin in humans (2). Furthermore, the Asp299Gly TLR4 mutation may increase the risk to carriers of developing gram-negative septic shock (E. Lorenz, J. Mira, K. Frees, and D. Schwartz, submitted for publication). However, TLR4 does not seem to be involved in mediating the cellular response to gram-positive pathogens. TLR2, which is highly homologous to TLR4, has been shown to mediate a response to LPS, albei...
The toll-like receptor 2 (TLR2) has gained importance as a major mammalian receptor for lipoproteins derived from the cell wall of a variety of bacteria, such as Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans. We were interested in identifying mutations in the TLR2 gene that might prove to be associated with altered susceptibility to septic shock. We performed a mutation screen of the TLR2 gene using single-stranded conformational polymorphism in 110 normal, healthy study subjects and detected an Arg753Gln mutation in three individuals. No other missense mutations were detected in the TLR2 open reading frame. Functional studies demonstrate that the Arg753Gln polymorphism, in comparison to the wild-type TLR2 gene, is significantly less responsive to bacterial peptides derived from B. burgdorferi and T. pallidum. In a septic shock population, the Arg753Gln TLR2 polymorphism occurred in 2 out of 91 septic patients. More importantly, both of the subjects with the TLR2 Arg753Gln polymorphism had staphylococcal infections. These findings suggest that a mutation in the TLR2 gene may predispose individuals to lifethreatening bacterial infections.
For several decades, the mouse strains C3H/HeJ and C57BL/10ScNCr have been known to be hyporesponsive to endotoxin or lipopolysaccharide (LPS). Recently, mutations in Toll-like receptor (TLR) 4 have been shown to underlie this aberrant response to LPS. To further determine the relationship between TLR4 and responsiveness to LPS, we genotyped 18 strains of mice for TLR4 and evaluated the physiological and biological responses of these strains to inhaled LPS. Of the 18 strains tested, 6 were wild type for TLR4 and 12 had mutations in TLR4. Of those strains with TLR4 mutations, nine had mutations in highly conserved residues. Among the strains wild type for TLR4, the inflammatory response in the airway induced by inhalation of LPS showed a phenotype ranging from very sensitive (DBA/2) to hyporesponsive (C57BL/6). A broad spectrum of airway hyperreactivity after inhalation of LPS was also observed among strains wild type for TLR4. Although the TLR4 mutant strains C3H/HeJ and C57BL/10ScNCr were phenotypically distinct from the other strains with mutations in the TLR4 gene, the other strains with mutations for TLR4 demonstrated a broad distribution in their physiological and biological responses to inhaled LPS. The results of our study indicate that although certain TLR4 mutations can be linked to a change in the LPS response phenotype, additional genes are clearly involved in determining the physiological and biological responses to inhaled LPS in mammals.
The GLC1A gene (which encodes the protein myocilin) has been associated with the development of primary open angle glaucoma. Bacterial artificial chromosomes containing the human GLC1A gene and its mouse ortholog were subcloned and sequenced to reveal the genomic structure of the genes. Comparison of the coding sequences of the human and mouse GLC1A genes revealed a high degree of amino acid homology (82%) and the presence of several conserved motifs in the predicted GLC1A proteins. The expression of GLC1A was examined by Northern blot analysis of RNA from adult human tissues. GLC1A expression was observed in 17 of 23 tissues tested, suggesting a wider range of expression than was recognized previously. The comparison of the human and mouse GLC1A genes suggests that the mouse may be a useful model organism in studying the molecular pathophysiology of glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.