Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm−2 year−1 in Porites spp. and 0.12 g cm−2 year−1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs.
The massive influx of pelagic Sargassum spp. (sargasso) into the Mexican Caribbean Sea has caused major deterioration of the coastal environment and has affected the tourism industry as well as livelihoods since 2015. Species of Sargassum have high capacity to absorb metals; thus, leachates of sargasso may contribute to contamination by potentially toxic metals when they drain into the sea and into the groundwater when dumped in inadequate land deposits. Valorization of sargasso would contribute to sustainable management; therefore, knowledge on potentially toxic metal content is necessary to define possible uses of the algae. We present concentrations of 28 elements measured using a non-destructive X-ray fluorescence analyzer (XRF) in 63 samples of sargasso collected between August 2018 and June 2019 from eight localities along ∼370 km long coastline of the Mexican Caribbean Sea. The sargasso tissues contained detectable concentrations of Al, As, Ca, Cl, Cu, Fe, K, Mg, Mn, Mo, P, Pb, Rb, S, Si, Sr, Th, U, V, and Zn. The element concentration in sargasso varied on spatial and temporal scales, which likely depended on the previous trajectory of the pelagic masses, and whether these had (or had not) passed through contaminated areas. Total arsenic concentration varied between 24–172 ppm DW, exceeding the maximum limit for seaweed intended as animal fooder (40 ppm DW) in 86% of the samples. For valorization, we recommend analyses of metal contents as a mandatory practice or avoiding uses for nutritional purposes. The high arsenic content is also of concern for environmental contamination of the sea and aquifer.
This guide on performance monitoring and evaluation (evaluation) is intended for practitioners responsible for planning and managing marine areas. Practitioners are the managers and stakeholders who are responsible for designing, planning, implementing, monitoring, and evaluating marine management plans. While its focus is on the performance monitoring and evaluation of MSP, planners and managers should know how to incorporate monitoring and evaluation considerations into the MSP process from its very beginning, and not wait until a plan is completed before thinking about how to measure “success”. Effective performance monitoring and evaluation is only possible when management objectives and expected outcomes are written in a way that is measurable, either quantitatively or qualitatively.
The arrival of large masses of drifting Sargassum since 2011 has caused changes in the natural dynamics of Caribbean coastal ecosystems. In the summer of 2015, unprecedented and massive mats of S. fluitans and S. natans have been observed throughout the Mexican Caribbean including exceptional accumulations ashore. This study uses stable isotopes to assess the impact of Sargassum blooms on the trophic dynamics of the Diadema antillarum sea urchin, a keystone herbivore on many Caribbean reefs. Bayesian models were used to estimate the variations in the relative proportions of carbon and nitrogen of assimilated algal resources. At three lagoon reef sites, the niche breadth of D. antillarum was analysed and compared under massive influx of drifting Sargassum spp. vs. no influx of Sargassum blooms. The effects of the leachates generated by the decomposition of Sargassum led to hypoxic conditions on these reefs and reduced the taxonomic diversity of macroalgal food sources available to D. antillarum. Our trophic data support the hypothesis that processes of assimilation of carbon and nitrogen were modified under Sargassum effect. Isotopic signatures of macroalgae associated with the reef sites exhibited significantly lower values of δ15N altering the natural herbivory of D. antillarum. The Stable Isotopes Analysis in R (SIAR) indicated that, under the influence of Sargassum blooms, certain algal resources (Dictyota, Halimeda and Udotea) were more assimilated due to a reduction in available algal resources. Despite being an abundant available resource, pelagic Sargassum was a negligible contributor to sea urchin diet. The Stable Isotope Bayesian Ellipses in R (SIBER) analysis displayed differences between sites, and suggests a reduction in trophic niche breadth, particularly in a protected reef lagoon. Our findings reveal that Sargassum blooms caused changes in trophic characteristics of D. antillarum with a negative impact by hypoxic conditions. These dynamics, coupled with the increase in organic matter in an oligotrophic system could lead to reduce coral reef ecosystem function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.