Nuclear transplantation (therapeutic cloning) could theoretically provide a limitless source of cells for regenerative therapy. Although the cloned cells would carry the nuclear genome of the patient, the presence of mitochondria inherited from the recipient oocyte raises questions about the histocompatibility of the resulting cells. In this study, we created bioengineered tissues from cardiac, skeletal muscle, and renal cells cloned from adult bovine fibroblasts. Long-term viability was demonstrated after transplantation of the grafts into the nuclear donor animals. Reverse transcription-PCR (RT-PCR) and western blot analysis confirmed that the cloned tissues expressed tissue-specific mRNA and proteins while expressing a different mitochondrial DNA (mtDNA) haplotype. In addition to creating skeletal muscle and cardiac "patches", nuclear transplantation was used to generate functioning renal units that produced urinelike fluid and demonstrated unidirectional secretion and concentration of urea nitrogen and creatinine. Examination of the explanted renal devices revealed formation of organized glomeruli- and tubule-like structures. Delayed-type hypersensitivity (DTH) testing in vivo and Elispot analysis in vitro suggested that there was no rejection response to the cloned renal cells. The ability to generate histocompatible cells using cloning techniques addresses one of the major challenges in transplantation medicine.
Interest in improving the speed of DNA analysis via capillary electrophoresis has led to efforts to integrate DNA amplification into microfabricated devices. This has been difficult to achieve since the thermocycling required for effective polymerase chain reaction (PCR) is dependent on an effective contact between the heating source and the PCR mixture vessel. We describe a noncontact method for rapid and effective thermocycling of PCR mixtures in electrophoretic chip-like glass chambers. The thermocycling is mediated through the use of a tungsten lamp as an inexpensive infrared radiation source, with cooling effected with a solenoid-gated compressed air source. With temperature ramping between 94 and 55 degrees C executed in glass microchambers as rapidly as 10 degrees C/s (heating) and 20 degrees C/s (cooling), cycle times as fast as 17 s could be achieved. Successful genomic DNA amplification was carried out with primers specific for the beta-chain of the T-cell receptor, and detectable product could be generated in a fraction of the time required with commercial PCR instrumentation. The noncontact-mediated thermocycling format was not found to be restricted to single DNA fragment amplification. Application of the thermocycling approach to both quantitative competitive PCR (simultaneous amplification of target and competitor DNA) and cycle sequencing reactions (simultaneous amplification of dideoxy terminated fragments) was successful. This sets the stage for implementing DNA thermocycling into a variety of microfabricated formats for rapid PCR fragment identification and DNA sequencing.
To elucidate glucose transport mechanisms in brain and to demonstrate the cellular expression of the braintype glucose transporter (GLUT3), antisera to a synthetic peptide corresponding to the C terminus were prepared and used as probes for this isoform of the facilitative glucose transporter family. Immunocytochemistry of frozen sections of dog and rat brain demonstrated GLUT3 antigen in pyramidal cell bodies and processes, in microvessels, and in intima pia or glia limitans. Immunoanalysis of Western blots identified a protein (Mr, 45,000) that was present in both neuron/neuropil and microvessel fractions. The presence of the GLUT3 message in brain was confirmed by Northern blot analysis and by amplifying and partially sequencing GLUT3 cDNA by PCR. These rmdings demonstrate a neuron glucose transporter in tissue and suggest that GLUT3 may play an important role in brain metabolism under physiological and pathophysiological conditions.
We describe a method that can be used to obtain and sequence 3' and 5' ends of cDNA transcripts directly from PCR products. The method employs a modified oligo(dT) primer that enables it to "lock-dock" at the junction of gene-specific cDNA sequence and a natural (3') or appended (5') poly(A) tail. As a result, discrete, first-round PCR products are obtained that are easily isolated and sequenced directly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.