Background and objectives
Hemodialysis complications remain a critical threat among dialysis patients. They result in sudden termination of the session which impacts the efficiency of dialysis. As intra-dialytic complications are the result of the interplay of multiple factors, artificial intelligence can aid in their early prediction. This research aims to compare different machine learning tools for the early prediction of the most frequent hemodialysis complications with high performance, using the fewest predictors for easier practical implementation.
Methods
Fifty different variables were recorded during 6000 hemodialysis sessions performed in a regional dialysis unit in Egypt. The filter technique was used to extract the most relevant features. Then, five individual classifiers and three ensemble approaches were implemented to predict the occurrence of intra-dialytic complications. Different subsets of 25, 12 and 6 from the 50 collected features were tested.
Results
Random forest yielded the highest accuracy of 98% with the least training time using 12 features in a balanced dataset, while the gradient boosting allowed obtaining the highest F1-score of 94%, 92%, and 78% in the prediction of hypotension, hypertension, and dyspnea, respectively, in imbalanced datasets.
Conclusion
Applying different machine learning algorithms to big datasets can improve accuracy, reduce training time and model complexity allowing simple implementation in clinical practice. Our models can help nephrologists predict and possibly prevent dialysis complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.