Ambient Assisted Living (AAL) systems aim to enable the elderly people to stay active and live independently into older age by monitoring their behaviour, provide the needed assistance and detect early signs of health status deterioration. Non-intrusive sensors are preferred by the elderly to be used for the monitoring purposes. However, false positive or negative triggers of those sensors could lead to a misleading interpretation of the status of the elderlies. This paper presents a systematic literature review of the sensor failure detection and fault tolerance in AAL equipped with non-intrusive, event-driven, binary sensors. The existing works are discussed, and the limitations and research gaps are highlighted.
Ambient Assisted Living (AAL) is becoming crucial to help governments face the consequences of the emerging ageing population. It aims to motivate independent living of older adults at their place of residence by monitoring their activities in an unobtrusive way. However, challenges are still faced to develop a practical AAL system. One of those challenges is detecting failures in non-intrusive sensors in the presence of the non-deterministic human behaviour. This paper proposes sensor failure detection and isolation system in the AAL environments equipped with event-driven, ambient binary sensors. Association Rule mining is used to extract fault-free correlations between sensors during the nominal behaviour of the resident. Pruning is then applied to obtain a non-redundant set of rules that captures the strongest correlations between sensors. The pruned rules are then monitored in real-time to update the health status of each sensor according to the satisfaction and/or unsatisfaction of rules. A sensor is flagged as faulty when its health status falls below a certain threshold. The results show that detection and isolation of sensors using the proposed method could be achieved using unlabelled datasets and without prior knowledge of the sensors’ topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.