Platelet/endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kD member of the Ig gene superfamily that is expressed on platelets, endothelial cells, and certain leukocyte subsets. To examine the factors controlling vascular-specific expression of PECAM-1, we cloned the 5′-flanking region of the PECAM-1 gene and analyzed its transcriptional activity. 5′-Rapid amplification of cDNA ends (5′-RACE) analysis showed that transcription initiation occurred at several closely spaced nearby sites originating approximately 204 bp upstream from the translation start site. Analysis of the sequence immediately upstream from the transcription initiation site (TIS) showed no canonical TATA or CAAT elements, however an initiator element commonly found in TATA-less promoters encompassed the TIS. 5′-serially truncated PECAM-1 promoter segments cloned in front of a luciferase reporter drove transcription in both a lineage- and orientation-specific manner. Putative cis-acting control elements present within a 300-bp core promoter included two ets sites, an Sp1 site, tandem E-box domains, two GATA-associated sites (CACCC), an AP-2 binding site, and a GATA element at −24. Mutational analysis showed that optimal transcriptional activity required the GATA sequence at position −24, and gel-shift assays further showed that the GATA-2 transcription factor, but not GATA-1, bound to this region of the PECAM-1 promoter. Understanding the cis- and trans-acting factors that regulate the tissue-specific expression of PECAM-1 should increase our understanding of the mechanisms by which vascular-specific gene expression is achieved.
SummaryThe prevalence of the Factor V (FV) mutation associated with activated protein C resistance (FV Leiden) and its significance as a genetic risk factor for venous thrombosis have necessitated the development of a simple, rapid, and accurate assay for its detection. The polymerase chain reaction with sequence specific primers (PCR-SSP) provides a powerful technique for the discrimination of alleles resulting from single base substitutions. PCR amplification was performed using a sense primer complementary to both FV alleles coupled with either of two antisense allele specific primers, one complementary to the normal FV allele and one complementary to the FV Leiden allele. PCR conditions were developed that favored amplification only in the case of perfect complementation between template DNA and allele specific primer. The FV genotype was assigned based on whether or not each allele specific primer set produced an amplified product. Assignment of genotypes correlated 100% with those determined by the method of PCR amplification followed by MnII digestion. PCR-SSP allows the rapid and accurate identification of carriers of the Factor V Leiden mutation by a simple PCR reaction without the need for the usual post-amplification specificity step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.