Cell cycling plays an important role in plant development, including: (1) organ morphogenesis, (2) cell proliferation within tissues, and (3) cell differentiation. In this study we use a cyclin::beta-glucuronidase reporter construct to characterize spatial and temporal patterns of cell cycling at each of these levels during wild-type development in the model genetic organism Arabidopsis thaliana (Columbia). We show that a key morphogenetic event in leaf development, blade formation, is highly correlated with localized cell cycling at the primordium margin. However, tissue layers are established by a more diffuse distribution of cycling cells that does not directly involve the marginal zone. During leaf expansion, tissue proliferation shows a strong longitudinal gradient, with basiplastic polarity. Tissue layers differ in pattern of proliferative cell divisions: cell cycling of palisade mesophyll precursors is prolonged in comparison to that of pavement cells of the adjacent epidermal layers, and cells exit the cycle at different characteristic sizes. Cell divisions directly related to formation of stomates and of vascular tissue from their respective precursors occur throughout the period of leaf extension, so that differing tissue patterns reflect superposition of cycling related to cell differentiation on more general tissue proliferation. Our results indicate that cell cycling related to leaf morphogenesis, tissue-specific patterns of cell proliferation, and cell differentiation occurs concurrently during leaf development and suggest that unique regulatory pathways may operate at each level.
INTRODUCTIONThe pattern and ontogeny of leaf venation appear to guide or limit many aspects of leaf cell differentiation and function. Photosynthetic, supportive, stomatal, and other specialized cell types differentiate in positions showing a spatial relationship to the vascular system. These spatial relationships are of obvious importance to leaf function, which relies on venation for the servicing of cells engaged in photosynthesis, gas exchange, and other leaf processes.Although the need for coordinated organization of cell types around the vascular system is clear, the means by which this is achieved during development is not well understood. In the few systems in which it has been possible to follow the ontogeny of the venation along with the differentiation and function of surrounding cell types (e.g., in C4 grasses), observations suggest that the developing vascular system may have a role in providing positional landmarks that guide the differentiation of other cell types. Another possible explanation is that an underlying pattern guides the differentiation of both venation and surrounding cells.Whether the process of vascularization creates or reveals a pattern, studies to date are largely descriptive, and little is understood of the underlying mechanisms. These mechanisms must be highly regulated, as evidenced by the successful use of species-specific leaf vascular pattern as a taxonomic characteristic (e.g., Klucking, 1992) and by the predictable effect of certain mutations. In this review, we summarize the vascular patterns and their ontogenies in dicots and monocots, referring extensively but not exclusively to Arabidopsis and maize as examples. We also discuss a variety of models that seek to explain vascular pattern formation, and we provide a summary of molecular and genetic investigations of the process. VASCULAR PAlTERN IN MATURE LEAVES DicotsThe relatively small simple leaves of Arabidopsis illustrate many of the characteristic features of leaf venation found in
Programmed cell death (PCD) functions in the developmental remodeling of leaf shape in higher plants, a process analogous to digit formation in the vertebrate limb. In this study, we provide a cytological characterization of the time course of events as PCD remodels young expanding leaves of the lace plant. Tonoplast rupture is the first PCD event in this system, indicated by alterations in cytoplasmic streaming, loss of anthocyanin color, and ultrastructural appearance. Nuclei become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling positive soon afterward but do not become morphologically altered until late stages of PCD. Genomic DNA is fragmented, but not into internucleosomal units. Other cytoplasmic changes, such as shrinkage and degradation of organelles, occur later. This form of PCD resembles tracheary element differentiation in cytological execution but requires unique developmental regulation so that discrete panels of tissue located equidistantly between veins undergo PCD while surrounding cells do not.
A well-resolved phylogeny of Flaveria is used to infer evolutionary relationships among species, biogeographical distributions, and C(4) photosynthetic evolution. Data on morphology, life history, and DNA sequences (chloroplastic trnL-F, nuclear ITS and ETS) for 21 of 23 known species were collected. Each data set was analyzed separately and in combination using maximum parsimony and Bayesian analyses. The phylogeny of Flaveria is based on the combined analysis of all data. Our phylogenetic evidence indicates that C(3) Flaveria are all basal to intermediate (C(3)-C(4) and C(4)-like) and fully expressed C(4) Flaveria species. Two strongly supported clades (A and B) are present. Using this phylogeny, we evaluate the current systematics of the genus and suggest the removal and reevaluation of certain taxa. We also infer the center of origin and dispersal of Flaveria species. Multiple origins of photosynthetic pathway intermediacy in Flaveria are recognized. C(3)-C(4) intermediacy has evolved twice in the genus and is found to be evolutionarily intermediate in clade A, but not necessarily in clade B. C(4)-like photosynthesis is also derived once in each clade. In addition, fully expressed C(4) photosynthesis may have evolved up to three times within clade A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.