Objectives: The coronavirus disease 2019 pandemic has required that hospitals rapidly adapt workflows and processes to limit disease spread and optimize the care of critically ill children. Design and Setting: As part of our institution’s coronavirus disease 2019 critical care workflow design process, we developed and conducted a number of simulation exercises, increasing in complexity, progressing to intubation wearing personal protective equipment, and culminating in activation of our difficult airway team for an airway emergency. Patients and Interventions: In situ simulations were used to identify and rework potential failure points to generate guidance for optimal airway management in coronavirus disease 2019 suspected or positive children. Subsequent to this high-realism difficult airway simulation was a real-life difficult airway event in a patient suspected of coronavirus disease 2019 less than 12 hours later, validating potential failure points and effectiveness of rapidly generated guidance. Measurements and Main Results: A number of potential workflow challenges were identified during tabletop and physical in situ manikin-based simulations. Experienced clinicians served as participants, debriefed, and provided feedback that was incorporated into local site clinical pathways, job aids, and suggested practices. Clinical management of an actual suspected coronavirus disease 2019 patient with difficult airway demonstrated very similar success and anticipated failure points. Following debriefing and assembly of a success/failure grid, a coronavirus disease 2019 airway bundle template was created using these simulations and clinical experiences for others to adapt to their sites. Conclusions: Integration of tabletop planning, in situ simulations, and debriefing of real coronavirus disease 2019 cases can enhance planning, training, job aids, and feasible policies/procedures that address human factors, team communication, equipment choice, and patient/provider safety in the coronavirus disease 2019 pandemic era.
OBJECTIVES: Emergency transfers (ETs), deterioration events with late recognition requiring ICU interventions within 1 hour of transfer, are associated with adverse outcomes. We leveraged electronic health record (EHR) data to assess the association between ETs and outcomes. We also evaluated the association between intervention timing (urgency) and outcomes. METHODS: We conducted a propensity-score-matched study of hospitalized children requiring ICU transfer between 2015 and 2019 at a single institution. The primary exposure was ET, automatically classified using Epic Clarity Data stored in our enterprise data warehouse endotracheal tube in lines/drains/airway flowsheet, vasopressor in medication administration record, and/or ≥60 ml/kg intravenous fluids in intake/output flowsheets recorded within 1 hour of transfer. Urgent intervention was defined as interventions within 12 hours of transfer. RESULTS: Of 2037 index transfers, 129 (6.3%) met ET criteria. In the propensity-score-matched cohort (127 ET, 374 matched controls), ET was associated with higher in-hospital mortality (13% vs 6.1%; odds ratio, 2.47; 95% confidence interval [95% CI], 1.24–4.9, P = .01), longer ICU length of stay (subdistribution hazard ratio of ICU discharge 0.74; 95% CI, 0.61–0.91, P < .01), and longer posttransfer length of stay (SHR of hospital discharge 0.71; 95% CI, 0.56–0.90, P < .01). Increased intervention urgency was associated with increased mortality risk: 4.1% no intervention, 6.4% urgent intervention, and 10% emergent intervention. CONCLUSIONS: An EHR measure of deterioration with late recognition is associated with increased mortality and length of stay. Mortality risk increased with intervention urgency. Leveraging EHR automation facilitates generalizability, multicenter collaboratives, and metric consistency.
OBJECTIVES: Event debriefing has established benefit, but its adoption is poorly characterized among pediatric ward providers. To improve patient safety, our hospital restructured its debriefing process for ward deterioration events culminating in ICU transfer. The aim of this study was to describe this process’ implementation. METHODS: In the restructured process, multidisciplinary ward providers are expected to debrief all ICU transfers. We conducted a multimethod analysis using facilitative guides completed by debriefing participants. Monthly debriefing completion served as an adoption metric. RESULTS: Between March 2019 and February 2020, providers across 9 wards performed debriefing for 134 of 312 PICU transfers (43%). Bedside nurses participated most frequently (117 debriefings [87%]). There was no significant difference in debriefing by unit, acuity, season, or nurse staffing. Compared with units fully staffed by rotational frontline clinicians (FLCs; eg, resident physicians), units with dedicated FLCs whose responsibilities are primarily limited to that unit (eg, oncology hospitalists) completed significantly more monthly debriefings (average [SD] 57% [30%] vs 33% [28%] of PICU transfers; P = .004). FLC participation was also higher on these units (50% of debriefings [37%] vs 24% [37%]; P = .014). Through qualitative analysis, we identified distinct debriefing themes, with teaming activities such as communication cited most often. CONCLUSIONS: Implementation of a multidisciplinary debriefing process for ward deterioration events culminating in ICU transfer was associated with differential adoption across providers and FLC staffing models but not acuity or nurse staffing. Teaming activities were a debriefing priority. Future study will assess patient safety outcomes.
Objectives: To discuss the challenges of conducting a death by neurologic criteria or brain death evaluation in the coronavirus disease 2019 era and provide guidance to mitigate viral transmission risk and maintain patient safety during testing. Design: Not applicable. Setting: Not applicable. Patients: Children with suspected or confirmed coronavirus disease 2019 who suffer catastrophic brain injury due to one of numerous neurologic complications or from an unrelated process and require evaluation for death by neurologic criteria. Interventions: Not applicable. Measurements and Main Results: There is a risk to healthcare providers from aerosol generation during the neurologic examination and apnea test for determination of death by neurologic criteria. In this technical note, we provide guidance to mitigate transmission risk and maintain patient safety during each step of the death by neurologic criteria evaluation. Clinicians should put on appropriate personal protective equipment before performing the death by neurologic criteria evaluation. Risk of aerosol generation and viral transmission during the apnea test can be mitigated by using continuous positive airway pressure delivered via the ventilator as a means of apneic oxygenation. Physicians should assess the risk of transporting coronavirus disease 2019 patients to the nuclear medicine suite to perform a radionucleotide cerebral blood flow study, as disconnections to and from the ventilator for transport and inadvertent ventilator disconnections during transport can increase transmission risk. Conclusions: When conducting the neurologic examination and apnea test required for death by neurologic criteria determination in patients with suspected or confirmed coronavirus disease 2019, appropriate modifications are needed to mitigate the risk of viral transmission and ensure patient safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.