Calcium impregnation is used as a pretreatment in the processing of papaya in syrup. The effect of process temperature (30 and 45°C), calcium source (calcium gluconate and calcium lactate), calcium concentration (0.5 and 1.5% w/w), and pH (4.2 and 6) were studied. The mineral source affected significantly the calcium uptake and the fruit firmness, and therefore, the product quality maximum content of calcium in the fruit was 240 and 72 mg/100 g fresh fruit in 8 h of treatment with calcium lactate and calcium gluconate, respectively. Greater firmness was observed in samples impregnated with calcium lactate. Impregnation treatments did not affect the surface color of fruit. Finally, the effect of cooking in sucrose syrup on product quality attributes (calcium retention, firmness, and color) was analyzed. Cooking in syrup had a positive effect on tissue firmness, despite the decrease of calcium content. During cooking in syrup, calcium content of treated fruit decreased between 9% and 37%. However, the calcium content of fruit in syrup was up to 6 times higher than in fresh fruit. Moreover, the cooking stage had a strong influence on color parameters, leading to a processed product darker than fresh fruit.
The effect of calcium impregnation on drip loss, colour, mechanical properties, sensory perception and freezing time on frozen-thawed papaya was studied, evaluating different freezing methods: cryogenic, tunnel and household freezer freezing. Osmotic dehydration as pre-treatment was also evaluated. Freezing in liquid nitrogen was considered an inappropriate method for papaya preservation due to cracking. Calcium impregnation and osmotic dehydration increased tissue firmness and decreased freezing time (freezing time for fresh, calcium impregnated and osmo-dehydrated fruit was 23, 17 and 5 min in a tunnel and 118, 83 and 60 min in a household freezer, respectively). Calcium lactate was the most effective way to protect tissue's firmness before and after a freeze-thaw cycle (maximum stress values approx. 300-400% of the raw tissue for tunnel freezing and 260% for household freezer). Microstructure analysis showed better tissue integrity retention in papaya samples impregnated with calcium lactate than in those with calcium gluconate, after a freezing-thawing cycle, in agreement with the drip loss results. In spite of these results, consumers preferred frozen papaya without pre-treatment or impregnated with calcium gluconate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.