A major challenge in the clinical use of cytotoxic chemotherapeutics is maximizing efficacy in tumors while sparing normal tissue. Irinotecan is used for colorectal cancer treatment but the extent of its use is limited by toxic side effects. Liposomal delivery systems offer tools to modify pharmacokinetic and safety profiles of cytotoxic drugs. In this study, we defined parameters that maximize the antitumor activity of a nanoliposomal formulation of irinotecan (nal-IRI). In a mouse xenograft model of human colon carcinoma, nal-IRI dosing could achieve higher intratumoral levels of the prodrug irinotecan and its active metabolite SN-38 compared with free irinotecan. For example, nal-IRI administered at doses 5-fold lower than free irinotecan achieved similar intratumoral exposure of SN-38 but with superior antitumor activity. Tumor response and pharmacokinetic modeling identified the duration for which concentrations of SN-38 persisted above a critical intratumoral threshold of 120 nmol/L as determinant for antitumor activity. We identified tumor permeability and carboxylesterase activity needed for prodrug activation as critical factors in achieving longer duration of SN-38 in tumors. Simulations varying tumor permeability and carboxylesterase activity predicted a concave increase in tumor SN-38 duration, which was confirmed experimentally in 13 tumor xenograft models. Tumors in which higher SN-38 duration was achieved displayed more robust growth inhibition compared with tumors with lower SN-38 duration, confirming the importance of this factor in drug response. Overall, our work shows how liposomal encapsulation of irinotecan can safely improve its antitumor activity in preclinical models by enhancing accumulation of its active metabolite within the tumor microenvironment. Cancer Res; 74(23); 7003-13. Ó2014 AACR.
Physiologic barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a subtumoricidal photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduced metastasis, and increased both progression-free survival and 1-year disease-free survival. PDP enabled these durable improvements by targeting multiple tumor compartments to (i) increase intratumoral drug accumulation by >10-fold, (ii) increase the duration of drug exposure above a critical therapeutic threshold, and (iii) attenuate surges in CD44 and CXCR4 expression, which mediate chemoresistance often observed after multicycle chemotherapy. Overall, our results offer preclinical proof of concept for the effectiveness of PDP to minimize risks of tumor relapse, progression, and drug resistance and to extend patient survival. A biophysical priming approach overcomes key treatment barriers, significantly reduces metastases, and prolongs survival in orthotopic models of human pancreatic cancer. .
Purpose: To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI).Experimental Design: Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing's sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS). SLFN11 expression was assessed by Affymetrix HuEx arrays, Taqman RT-PCR, and immunoblotting.Results: Plasma and tumor concentrations of irinotecan and SN-38 (active metabolite) were approximately 10-fold higher for nal-IRI than for irinotecan. Two doses of NAL-IRI (10 mg/kg/ dose) achieved complete responses maintained for >100 days in 24 of 27 EFT-xenografted mice. Event-free survival for mice with RMS and NB was significantly shorter than for EFT. High SLFN11 expression has been reported to correlate with sensitivity to DNA damaging agents; median SLFN11 mRNA expression was >100-fold greater in both EFT cell lines and primary tumors compared with NB or RMS cell lines or primary tumors. Cytotoxicity of SN-38 inversely correlated with SLFN11 mRNA expression in 20 EFT cell lines.Conclusions: In pediatric solid tumor xenografts, nal-IRI demonstrated higher systemic and tumor exposures to SN-38 and improved antitumor activity compared with the current clinical formulation of irinotecan. Clinical studies of nal-IRI in pediatric solid tumors (especially EFT) and correlative studies to determine if SLFN11 expression can serve as a biomarker to predict nal-IRI clinical activity are warranted.
In the present study we have characterized T cell-driven immune function in mice that are genetically deficient in PKC theta. In response to simple immunologic stimulation invoked by in vivo T cell receptor (TCR) cross-linking, these mice showed significantly depressed plasma cytokine levels for IL-2, IL-4, IFNgamma, and TNFalpha compared to wild-type (WT) mice. In parallel, spleen mRNA levels for these cytokines were reduced, and NF-kappaB activation was also reduced in PKC theta knockouts (KO). Injection of allogeneic cells into the footpad of PKC theta deficient mice provoked a significantly diminished local T cell response compared to WT mice similarly challenged. Unlike comparable cells from wild type mice, CD45RBhi T cells harvested from PKC theta deficient mice failed to induce colitis in the SCID-CD45RB cell transfer model of IBD. In another T cell-dependent model of inflammatory disease, PKC theta deficient animals developed far less severe neurologic signs and reduced spinal cord inflammatory cell infiltrate compared to WT controls in the MOG-induced EAE model. A fundamental role for PKC theta in T cell activation and in the development of T cell-mediated inflammatory diseases is indicated by these results.
We have combined molecular modeling and classical structure-function techniques to define the interactions between the ligand-binding domain (LBD) of the vitamin D nuclear receptor (VDR) and its natural ligand, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)]. The affinity analogue 1alpha,25-(OH)(2)D(3)-3-bromoacetate exclusively labeled Cys-288 in the VDR-LBD. Mutation of C288 to glycine abolished this affinity labeling, whereas the VDR-LBD mutants C337G and C369G (other conserved cysteines in the VDR-LBD) were labeled similarly to the wild-type protein. These results revealed that the A-ring 3-OH group docks next to C288 in the binding pocket. We further mutated M284 and W286 (separately creating M284A, M284S, W286A, and W286F) and caused severe loss of ligand binding, indicating the crucial role played by the contiguous segment between M284 and C288. Alignment of the VDR-LBD sequence with the sequences of nuclear receptor LBDs of known 3-D structure positioned M284 and W286 in the presumed beta-hairpin of the molecule, thereby identifying it as the region contacting the A-ring of 1alpha, 25-(OH)(2)D(3). From the multiple sequence alignment, we developed a homologous extension model of the VDR-LBD. The model has a canonical nuclear receptor fold with helices H1-H12 and a single beta hairpin but lacks the long insert (residues 161-221) between H2 and H3. We docked the alpha-conformation of the A-ring into the binding pocket first so as to incorporate the above-noted interacting residues. The model predicts hydrogen bonding contacts between ligand and protein at S237 and D299 as well as at the site of the natural mutation R274L. Mutation of S237 or D299 to alanine largely abolished ligand binding, whereas changing K302, a nonligand-contacting residue, to alanine left binding unaffected. In the "activation" helix 12, the model places V418 closest to the ligand, and, consistent with this prediction, the mutation V418S abolished ligand binding. The studies together have enabled us to identify 1alpha,25-(OH)(2)D(3)-binding motifs in the ligand-binding pocket of VDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.