ROMK is an apical K؉ channel expressed in the thick ascending limb of Henle (TALH) and throughout the distal nephron of the kidney. Null mutations in the ROMK gene cause type II Bartter's syndrome, in which abnormalities of electrolyte, acid-base, and fluid-volume homeostasis occur because of defective NaCl reabsorption in the TALH. To understand better the pathogenesis of type II Bartter's syndrome, we developed a mouse lacking ROMK and examined its phenotype. Young null mutants had hydronephrosis, were severely dehydrated, and ϳ95% died before 3 weeks of age. ROMKdeficient mice that survived beyond weaning grew to adulthood; however, they had metabolic acidosis, elevated blood concentrations of Na ؉ and Cl ؊ , reduced blood pressure, polydipsia, polyuria, and poor urinary concentrating ability. Whole kidney glomerular filtration rate was sharply reduced, apparently as a result of hydronephrosis, and fractional excretion of electrolytes was elevated. Micropuncture analysis revealed that the single nephron glomerular filtration rate was relatively normal, absorption of NaCl in the TALH was reduced but not eliminated, and tubuloglomerular feedback was severely impaired. These data show that the loss of ROMK in the mouse causes perturbations of electrolyte, acid-base, and fluid-volume homeostasis, reduced absorption of NaCl in the TALH, and impaired tubuloglomerular feedback.
To isolate a cDNA encoding Na ؉ /H ؉ exchanger isoform 5 (NHE5), we screened a human spleen library using exon sequences of the NHE5 gene. Clones spanning 2.9 kilobase pairs were isolated; however, they contained several introns and were missing coding sequences at both the 5 and 3 ends. The missing 5 sequences were obtained by 5-rapid amplification of cDNA ends and by analysis of an NHE5 genomic clone, and the missing 3 sequences were obtained by 3-rapid amplification of cDNA ends. Polymerase chain reaction amplification of brain cDNA yielded products in which each of the introns had been correctly excised, whereas the introns were retained in products from spleen and testis, suggesting that the NHE5 transcripts expressed in these organs do not encode a functional transporter. The intron/exon organization of the NHE5 gene was analyzed and found to be very similar to that of the NHE3 gene. The NHE5 cDNA, which encodes an 896-amino acid protein that is most closely related to NHE3, was expressed in Na ؉ /H ؉ exchanger-deficient fibroblasts and shown to mediate Na ؉ /H ؉ exchange activity. Northern blot analysis demonstrated that the mRNA encoding NHE5 is expressed in multiple regions of the brain, including hippocampus, consistent with the possibility that it regulates intracellular pH in hippocampal and other neurons.
A hematopoietic cell (CFU-B1) capable of producing blast cell containing colonies in vitro was detected using a semisolid culture system. The CFU-B1 has the capacity for self-renewal and commitment to a number of hematopoietic lineages. Monoclonal antibody to the human progenitor cell antigen-i (HPCA-1) and a monoclonal antibody against the major histocompatibility class II antigen (HLA-DR) were used with fluorescence activated cell sorting to phenotype the CFU-B1. The CFU-B1 was found to express MylO but not HLA-DR antigen; experiments using complement-dependent cytotoxicity to eliminate DR positive cells confirmed this finding. Pretreatment of marrow cells with two chemotherapeutic agents, 5-fluorouracil and 4-hydroperoxycyclophosphamide facilitated detection of CFU-B1 derived colonies, while diminishing or totally inhibiting colony formation by other hematopoietic progenitor cells. CFU-Bl-derived colony formation was dependent upon the addition of exogenous hematopoietic growth factors. Media conditioned either by the human bladder carcinoma cell line 5637 or lectin stimulated leukocytes, as well as recombinant granulocyte-macrophage colony stimulating factor, interleukin 3 or interleukin la promoted blast cell colony formation. By contrast, neither recombinant erythropoietin, recombinant interleukin 4, purified macrophage colony stimulating factor or recombinant granulocyte colony-stimulating factor alone promoted blast cell colony formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.