Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.
The preparation and application of bio based plasticizers derived from vegetable oils has gained increasing attention in the polymer industry to date due to the emerging risk shown by the traditional petroleum-based phthalate plasticizer. Epoxy fatty acid ester is among the prospective alternative plasticizers since it is ecofriendly, non-toxic, biodegradable, low migration, and low carbon footprint. Epoxy plasticizer can be synthesized by the epoxidation reaction of fatty acid ester. In this study, the preparation of fatty acid ester as a green precursor of epoxy ester plasticizer was performed via esterification of free fatty acid (FFA) in high acidic Calophyllum inophyllum Seed Oil (CSO) using methanol in the presence of SnCl2.2H2O catalyst. The analysis of the process variables and responses using Box–Behnken Design (BBD) of Response Surface Methodology (RSM) was also accomplished. It was found that the quadratic model is the most appropriate model for the optimization process. The BBD analysis demonstrated that the optimum FFA conversion and residual FFA content were 75.03% and 4.59%, respectively, achieved at the following process condition: a reaction temperature of 59.36 °C, a reaction time of 117.80 min, and a catalyst concentration of 5.61%. The fatty acid ester generated was an intermediate product which can undergo a further epoxidation process to produce epoxy plasticizer in polymeric material production.
Indonesia has an abundant feedstock of Ceiba Pentandra which is very potential as a source for biodiesel production. However, it contains very high free fatty acid and can not be directly converted into biodiesel through transesterification process. One of the solution is by reacting Ceiba pentandra oil with ethanol under acid catalyst called esterification process. In this study, the operating conditions used for esterification reaction was Ceiba pentandra oil to methanol molar ratio of 1:12; with reaction time of 120 minutes. The reaction temperature was varied into 40°C, 50°C, 60°C and 70°C. The results show that, highest conversion achieved was 93.5% at reaction temperature of 70°C. Based on the experimental data, pseudo-Homogeneous model was used to model the kinetic of esterification reaction. Based on this model, the activation energy was 21.319kJ/mol and the kinetic factor was 14,264.08/minutes with R2 of 0.9675 and SSE of 0.0004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.