The design and development of the next-generation power-efficient CIGS solar cells are at the research forefront due to their potential applications in renewable energy. Due to rich fundamental properties such as chemical and physical structures of the CIGS layer, cell scaffolding, and its promising applications like low cost, easy integration, and high efficiency, the CIGS-based solar cell systems are of considerable interest and received tremendous attention. In this article, we review the CIGS solar cells from the point of view of structural engineering. We explain the intrinsic parts of crystalline, optical, and electronic structures of the CIGS absorber layer up to the extrinsic part of the cell multilayer structure. For intrinsic structure, we primarily review the modification of the crystallinity or chemical composition of the CIGS and the effects that these modifications have on the physical properties such as the adjustment of the bandgap grading, effect of impurity or doping, selenization, oxidation processes, and the surface morphology and structure orientation. For extrinsic structure, the effect of substrates, electrical back contact, windows, n-buffer, grid, and antireflection layers will be discussed further, as well as the possibility of their tandem use with other solar cell thin films.
We have studied the magnetodieletric coupling of polycrystalline samples of the spinels MCr2O4 (M = Mn, Co and Ni). Dielectric anomalies are clearly observed at the onset of the magnetic spiral structure (Ts) and at the ‘lock-in’ transition (Tf) in MnCr2O4 and CoCr2O4, and also at the onset of the canted structure (Ts) in NiCr2O4. The strength of the magnetodielectric coupling in this system can be explained by spin–orbit coupling. Moreover, the dielectric response in an applied magnetic field scales with the square of the magnetization for all three samples. Thus, the magnetodielectric coupling in this state appears to originate from the P2M2 term in the free energy.
We give general arguments that show that the linear magnetoelectric effect in antiferromagnetic materials gives rise to a magnetocapacitance anomaly-a divergence of the dielectric constant at the magnetic ordering temperature T N that appears in an applied magnetic field. The measurement of magnetodielectric response thus provides a definitive and experimentally accessible method to recognize antiferromagnetic linear magnetoelectric materials, circumventing the experimental difficulties often involved in measuring electric polarization. We confirm this result experimentally using the example of MnTiO 3 , which we show to exhibit the linear magnetoelectric effect. No dielectric anomaly is observed at T N in the absence of an applied magnetic field. However, a sharp peak in the dielectric constant appears here when a magnetic field is applied along the c axis, reflecting a linear coupling of the polarization P with the antiferromagnetic order parameter L. In accordance with our theoretical analysis, the dielectric constant close to T N increases with the square of the magnetic field.
We have explored a new strategy to discover materials with large resistive or capacitive responses to magnetic fields by synthesizing EuMO2N (M = Nb, Ta) perovskites that combine ferromagnetic order of S = 7/2 Eu2+ spins with possible off-center distortions of the d0 M5+ cations enhanced by covalent bonding to N. EuNbO2N shows colossal magnetoresistances at low temperatures and a giant magnetocapacitance. However, the latter response originates from a microstructural effect rather than an intrinsic multiferroism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.