The structurally homologous Mtf1 and TFB2M proteins serve as transcription initiation factors of mitochondrial RNA polymerases in Saccharomyces cerevisiae and humans, respectively. These transcription factors directly interact with the nontemplate strand of the transcription bubble to drive promoter melting. Given the key roles of Mtf1 and TFB2M in promoter-specific transcription initiation, it can be expected that the DNA binding activity of the mitochondrial transcription factors is regulated to prevent DNA binding at inappropriate times. However, little information is available on how mitochondrial DNA transcription is regulated. While studying C-terminal (C-tail) deletion mutants of Mtf1 and TFB2M, we stumbled upon a finding that suggested that the flexible C-tail region of these factors autoregulates their DNA binding activity. Quantitative DNA binding studies with fluorescence anisotropy-based titrations revealed that Mtf1 with an intact C-tail has no affinity for DNA but deletion of the C-tail greatly increases Mtf1's DNA binding affinity. Similar observations were made with TFB2M, although autoinhibition by the C-tail of TFB2M was not as complete as in Mtf1. Analysis of available TFB2M structures disclosed that the C-tail engages in intramolecular interactions with the DNA binding groove in the free factor, which, we propose, inhibits its DNA binding activity. Further experiments showed that RNA polymerase relieves this autoinhibition by interacting with the C-tail and engaging it in complex formation. In conclusion, our biochemical and structural analyses reveal autoinhibitory and activation mechanisms of mitochondrial transcription factors that regulate their DNA binding activities and aid in specific assembly of transcription initiation complexes.
The structurally homologous Mtf1 and TFB2M proteins serve as transcription initiation factors of the Saccharomyces cerevisiae and human mitochondrial RNA polymerases, respectively. These transcription factors directly interact with the non-template strand of the transcription bubble to drive promoter melting. Given the key roles of Mtf1 and TFB2M in promoterspecific transcription initiation, it is expected that the DNA binding activity of the mitochondrial transcription factors would be regulated to prevent DNA binding at inappropriate times. However, there is little information on how mitochondrial DNA transcription is regulated. While studying the C-tail deletion mutants of Mtf1 and TFB2M, we stumbled upon a new finding that suggested that the flexible C-tail region of these factors autoregulates their DNA binding activity. Quantitative DNA binding studies with fluorescence anisotropy-based titrations show that Mtf1 with an intact C-tail has no affinity for the DNA but the deletion of C-tail greatly increases the DNA binding affinity. Similar observations were made with TFB2M, although autoinhibition by the C-tail of TFB2M was not as absolute as in Mtf1. Analysis of available TFB2M structures show that the C-tail makes intramolecular interactions with the DNA binding groove in the free factor, which we propose masks the DNA binding activity. Further studies show that the RNA polymerase relieves autoinhibition by interacting with the C-tail and engaging it in complex formation. Thus, our biochemical and structural analysis identify previously unknown autoinhibitory and activation mechanisms of mitochondrial transcription factors that regulate the DNA binding activity and aid in specific assembly of the initiation complexes.Autoinhibitory C-tail of mitochondrial transcription factors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.