It has been established in preclinical models of multiple myeloma and acute myeloid leukemia (AML) that the bone marrow microenvironment provides protection from chemotherapy-and death receptor^mediated apoptosis. This form of resistance, termed de novo drug resistance, occurs independent of chronic exposure to cancer-related therapies and likely promotes the development of multidrug resistance. Consequently, it is of major interest to identify compounds or drug combinations that can overcome environment-mediated resistance. In this study, we investigated the activity of tipifarnib (Zarnestra, formerly R115777) combined with bortezomib (Velcade, formerly PS-341) in microenvironment models of multiple myeloma and AML. The combination proved to be synergistic in multiple myeloma and AML cell lines treated in suspension culture. Even in tumor cells relatively resistant to tipifarnib, combined activity was maintained. Tipifarnib and bortezomib were also effective when multiple myeloma and AML cells were adhered to fibronectin, providing evidence that the combination overcomes cell adhesion^mediated drug resistance (CAM-DR). Of importance, activation of the endoplasmic reticulum stress response was enhanced and correlated with apoptosis and reversal of CAM-DR. Multiple myeloma and AML cells cocultured with bone marrow stromal cells also remained sensitive, although stromal-adhered tumor cells were partially protected (relative to cells in suspension or fibronectin adhered). Evaluation of the combination using a transwell apparatus revealed that stromal cells produce a protective soluble factor. Investigations are under way to identify the cytokines and/or growth factors involved. In summary, our study provides the preclinical rationale for trials testing the tipifarnib and bortezomib combination in patients with multiple myeloma and AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.