Enterovirus (EV) 68 was originally isolated in California in 1962 from four children with respiratory illness. Since that time, reports of EV68 isolation have been very uncommon. Between 1989 and 2003, 12 additional EV68 clinical isolates were identified and characterized, all of which were obtained from respiratory specimens of patients with respiratory tract illnesses. No EV68 isolates from enteric specimens have been identified from these same laboratories. These recent isolates, as well as the original California strains and human rhinovirus (HRV) 87 (recently shown to be an isolate of EV68 and distinct from the other human rhinoviruses), were compared by partial nucleotide sequencing in three genomic regions (partial sequencing of the 59-non-translated region and 3D polymerase gene, and complete sequencing of the VP1 capsid gene). The EV68 isolates, including HRV87, were monophyletic in all three regions of the genome. EV68 isolates and HRV87 grew poorly at 37 6C relative to growth at 33 6C and their titres were reduced by incubation at pH 3?0, whereas the control enterovirus, echovirus 11, grew equally well at 33 and 37 6C and its titre was not affected by treatment at pH 3?0. Acid lability and a lower optimum growth temperature are characteristic features of the human rhinoviruses. It is concluded that EV68 is primarily an agent of respiratory disease and that it shares important biological and molecular properties with both the enteroviruses and the rhinoviruses.
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons.
The chitin-binding protein GbpA of Vibrio cholerae has been recently described as a common adherence factor for chitin and intestinal surface. Using an isogenic in-frame gbpA deletion mutant, we first show that V. cholerae O1 El Tor interacts with mouse intestinal mucus quickly, using GbpA in a specific manner. The gbpA mutant strain showed a significant decrease in intestinal adherence, leading to less colonization and fluid accumulation in a mouse in vivo model. Purified recombinant GbpA (rGbpA) specifically bound to N-acetyl-D-glucosamine residues of intestinal mucin in a dose-dependent, saturable manner with a dissociation constant of 11.2 M. Histopathology results from infected mouse intestine indicated that GbpA binding resulted in a time-dependent increase in mucus secretion. We found that rGbpA increased the production of intestinal secretory mucins (MUC2, MUC3, and MUC5AC) in HT-29 cells through upregulation of corresponding genes. The upregulation of MUC2 and MUC5AC genes was dependent on NF-B nuclear translocation. Interestingly, mucin could also increase GbpA expression in V. cholerae in a dose-dependent manner. Thus, we propose that there is a coordinated interaction between GbpA and mucin to upregulate each other in a cooperative manner, leading to increased levels of expression of both of these interactive factors and ultimately allowing successful intestinal colonization and pathogenesis by V. cholerae.Vibrio cholerae is the causative agent of the potentially lethal disease cholera. V. cholerae strains belonging to serogroups O1 and O139 are mainly responsible for cholera epidemics, while strains of other serogroups may cause sporadic outbreaks of the disease. Although the O139 strain has evolved recently, V. cholerae O1 biotype El Tor strains have still been responsible for most of the epidemics in recent years (20,26). In order to cause the disease, V. cholerae must adhere to the intestinal mucus barrier (52). The ability of V. cholerae to adhere to animal cells has been studied before (26,42), and various adherence factors have been proposed, including the virulence-associated toxin-coregulated pilus (5), outer membrane proteins (26, 42), and lipopolysaccharide (LPS) (11). Attachment of V. cholerae to abiotic surfaces has also been recently described (50). However, there is still no information about the factor(s) responsible for initial adherence of the bacteria to the intestine and whether the host plays any role in aiding the colonization of the intestine by the bacteria.Vibrios are marine organisms that adhere to chitin in the environment (12, 33) and utilize chitin as the sole source of nitrogen and carbon by using a family of glycosyl hydrolases, called chitinases (21). Genome analysis of V. cholerae O1 El Tor has revealed the presence of seven such chitinase genes (7), some of which have been characterized (27,37). One of these genes is the putative chitinase gene with locus number VCA0811, the product of which has been recently identified as a common adhesion molecule for both chitinou...
Folate is an essential micronutrient that, in mammals, must be obtained from exogenous sources via intestinal absorption. Previous studies have characterized different aspects of the mechanism of the intestinal folate uptake process. Much less, however, is known about regulation of this process. In this study, we examined the effect of dietary folate deficiency on intestinal folate uptake using the rat as an animal model. The results showed that dietary folate deficiency leads to a significant (P < 0.01) and specific upregulation in the transepithelial transport of folic acid. The upregulation in transepithelial folate transport 1) was found to be due to an induction in carrier-mediated folate uptake across the brush-border membrane (BBM) and was mediated via a significant (P < 0.01) increase in the maximal velocity but not the apparent Michaelis constant of the uptake process, 2) was associated with a marked increase in the steady-state mRNA level of reduced folate carrier-1 and in the level of the expressed protein at the intestinal BBM, and 3) was associated with a marked (>10-fold) increase in the activity of the intestinal BBM form of folate hydrolase. Results of this study demonstrate, for the first time, that dietary folate deficiency leads to a marked upregulation in intestinal folate uptake and in the activity of folate hydrolase. Furthermore, the upregulation in folate uptake is associated with an increase in mRNA and protein levels of folate carrier, suggesting possible involvement of a transcriptional regulatory mechanism(s) in the upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.