The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
The enteric nervous system (ENS) is derived from neural crest cells that migrate along the gastrointestinal tract to form a network of neurons and glia that are essential for regulating intestinal motility. Despite the number of genes known to play essential roles in ENS development, the molecular etiology of congenital disorders affecting this process remains largely unknown. To determine the role of bone morphogenetic protein (BMP) signaling in ENS development, we first examined the expression of bmp2, bmp4, and bmprII during hindgut development and find these strongly expressed in the ENS. Moreover, functional BMP signaling, demonstrated by the expression of phosphorylated Smad1/5/8, is present in the enteric ganglia. Inhibition of BMP activity by noggin misexpression within the developing gut, both in ovo and in vitro, inhibits normal migration of enteric neural crest cells. BMP inhibition also leads to hypoganglionosis and failure of enteric ganglion formation, with crest cells unable to cluster into aggregates. Abnormalities of migration and ganglion formation are the hallmarks of two human intestinal disorders, Hirschsprung's disease and intestinal neuronal dysplasia. Our results support an essential role for BMP signaling in these aspects of ENS development and provide a basis for further investigation of these proteins in the etiology of neuro-intestinal disorders.
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts’ views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.