Corticosteroid injection is commonly used to treat tendon injuries but is often associated with tendon rupture and impaired tendon healing. The effects of dexamethasone on tenocytes have been studied in vitro but only using high concentrations of dexamethasone in monolayer cultures of tenocytes over short periods of time. We have therefore investigated the effects of physiological and pharmacological concentrations of dexamethasone on monolayer cultures of tenocytes over extended time periods. We have also used fibroblastic-colony forming unit cultures to examine the effects of dexamethasone on a progenitor cell population located in tendons. Culturing tenocytes in the presence of dexamethasone for a period of 24 days resulted in a concentration-related decrease in cell number and collagen synthesis as compared to control cultures. This effect was time dependent with cell number in both dexamethasone-treated and control cultures leveling off after 14 days with the control cultures reaching higher cell densities. In contrast in control cultures, collagen accumulation continued to increase until week 4, whereas in the presence of dexamethasone, this tended to level off after 14 days. To study the role of progenitor cell recruitment, the effects of dexamethasone were investigated using the fibroblastic-colony forming unit assay. Treatment with dexamethasone at concentrations of 0.1 nM to 10 mM leads to a progressive reduction in mean colony size as compared to control cultures. Colony number remained constant at concentrations below 10 nM but fell progressively at concentrations above this. In conclusion, dexamethasone reduces both cell number and collagen synthesis in tenocyte cultures in a concentration-dependent manner by both direct effects on tenocyte proliferation and collagen accumulation, and also by modulating the recruitment of tendon progenitor cells. ß
Bone marrow stromal cells (BMSCs) possess certain stem celllike properties and can differentiate to adopt a number of mesenchymal phenotypes. BMSCs are usually investigated in vitro as homogeneous single-cell suspensions; however, these preparations lose much of their osteogenic capacity. Using the fibroblastic colony-forming unit assay, we have compared the proliferation and capacity to express alkaline phosphatase of BMSC-containing aggregates of bone marrow cells with single-cell suspensions of bone marrow cells from the same source. Aggregates were separated from single cells by density gradient centrifugation or cell sieving. The aggregate and single-cell preparations gave rise to similar numbers of colonies; however, the colonies produced by the aggregates were larger and expressed higher levels of alkaline phosphatase. When the aggregates were dissociated, colonies still formed; however, they expressed negligible levels of alkaline phosphatase. Immunomagnetic selection and immunofluorescent staining for CD61, N-methyl-D-aspartate (NMDA) receptor subunit 1, and acetylcholinesterase showed that the majority of the aggregates giving rise to osteoblastic colonies contained megakaryocytes. These data demonstrate that removing BMSCs from their normal environment reduces their osteoblastic capacity and that to achieve their maximal differentiation, BMSCs require direct physical contact with accessory cells such as megakaryocytes. These findings may be of direct relevance to the use of BMSCs for tissue-engineering purposes.
BackgroundNon-steroidal anti-inflammatory drugs (NSAID) are commonly used in the treatment of tendinopathies such as tendonitis and tendinosis. Despite this, little is known of their direct actions on tendon-derived cells. As NSAIDs have been shown to delay healing in a number of mesenchymal tissues we have investigated the direct effects of indomethacin on the proliferation of tendon-derived cells.Results and DiscussionThe results obtained were dependent on both the type of cells used and the method of measurement. When measured using the Alamar blue assay, a common method for the measurement of cell proliferation and viability, no effect of indomethacin was seen regardless of cell source. It is likely that this lack of effect was due to a paucity of mitochondrial enzymes in tendon cells.However, when cell number was assessed using the methylene blue assay, which is a simple nuclear staining technique, an Indomethacin-induced inhibition of proliferation was seen in primary cells but not in secondary subcultures.ConclusionThese results suggest that firstly, care must be taken when deciding on methodology used to investigate tendon-derived cells as these cells have a quite different metabolism to other mesenchymal derive cells. Secondly, Indomethacin can inhibit the proliferation of primary tendon derived cells and that secondary subculture selects for a population of cells that is unresponsive to this drug.
BackgroundTendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression.MethodsCells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry.ResultsIn the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and rats whereas D7fib was expressed at lower levels by PT cells in humans.ConclusionThese data show that tendon & ligament cells from different sources possess intrinsic differences in terms of their growth, dexamethasone responsiveness and cell surface marker expression. This suggests that for tissue engineering purposes the cell source must be carefully considered to maximise their efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.