Lithium/carbon fluoride (Li/CFx) batteries have been widely researched due to their high theoretical specific energy. To create a high-performance electrode, the fluorinated hard carbon (FHC) is prepared by direct gas-phase fluorination. It has a high F/C ratio of 0.95 based on the gravimetric method. Selecting hard carbon (HC) with a high surface area as the carbon source allows for FHC to achieve suitable interlayer spacing and specific surface area, as well as abundant pore structures to facilitate rapid lithium ion transportation. Additionally, a composite of graphene and carbon nanotubes (CNTs) is coated on the surface of FHC, enhancing electron transport speed. The resulting FHC&C exhibits a very high energy density of 1256 Wh kg−1 and an excellent power density of 72,929 W kg−1 at a high rate of 40 C. Moreover, compared to commercial CFx, FHC&C exhibits higher energy and power densities, thus presenting a promising practical application prospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.