A water-soluble acrylamide hydrophobically associating terpolymer for polymer flooding was successfully synthesized via free radical polymerization using acrylamide (AM), acrylic acid (AA), and N,N-divinylnonadeca-1,10-dien-2-amine (DNDA) as raw materials. The terpolymer was characterized by IR spectroscopy and fluorescence spectra. Compared with partially hydrolyzed polyacryamide (HPAM), the terpolymer showed a stronger link and better dimensional network structure under the environmental scanning electron microscope (ESEM). The results of rheology indicated that the terpolymer (AM-NaAA-DNDA) showed an excellent shear-resistance in high shear rate (1000 s À1 ) and remarkable temperature-tolerance (above 110 C). The salt-resisting experiment revealed that this terpolymer had a better anti-salt ability. According to the core flooding test, it could be obtained that oil recovery was enhanced more than 15% under conditions of 2000 mg/L terpolymer in the mineralization of 8000 mg/L at 60 C.
A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA),N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy,1H NMR spectroscopy,13C NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). The viscosity retention rate of the hyperbranched polymer was 22.89% higher than that of the AM/AA copolymer (HPAM) at 95°C, and the viscosity retention rate was 8.17%, 12.49%, and 13.68% higher than that of HPAM in 18000 mg/L NaCl, 1800 mg/L CaCl2, and 1800 mg/L MgCl2·6H2O brine, respectively. The hyperbranched polymer exhibited higher apparent viscosity (25.2 mPa·s versus 8.1 mPa·s) under 500 s−1shear rate at 80°C. Furthermore, the enhanced oil recovery (EOR) of 1500 mg/L hyperbranched polymer solutions was up to 23.51% by the core flooding test at 80°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.