In this work, we studied the optimal investment problem of an investor who had exponential utility preference and traded two assets; (1) a risky asset which price dynamics was governed by the Constant Elasticity of variance (CEV) model and (2) a risk-free asset which price system followed the Ornstein-Uhlenbeck model. We employed the maximum principle of dynamic programming to obtain the Hamilton-Jacobi-Bellman (H-J-B) equation on which the first principle and the elimination of variable dependency were applied to get the closed-form of the investor's optimal strategies. Two scenarios where the Brownian motions correlated and where they did not correlate were investigated. Also considered were the cases of when transaction cost was involved and when transaction cost was not involved. This lead to six cases that among the results obtained was that the investor has an optimal investment strategy that requires more amount of money for investment when the Brownian motions do not correlate and there is transaction cost than when the Brownian motions correlate and there is no transaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.