More effective treatment options for elderly acute myeloid leukemia (AML) patients are needed as only 25–50% of patients respond to standard-of-care therapies, response duration is typically short, and disease progression is inevitable even with some novel therapies and ongoing clinical trials. Anti-apoptotic BCL-2 family inhibitors, such as venetoclax, are promising therapies for AML. Nonetheless, resistance is emerging. We demonstrate that venetoclax combined with cyclin-dependent kinase (CDK) inhibitor alvocidib is potently synergistic in venetoclax-sensitive and -resistant AML models in vitro, ex vivo and in vivo. Alvocidib decreased MCL-1, and/or increased pro-apoptotic proteins such as BIM or NOXA, often synergistically with venetoclax. Over-expression of BCL-XL diminished synergy, while knock-down of BIM almost entirely abrogated synergy, demonstrating that the synergistic interaction between alvocidib and venetoclax is primarily dependent on intrinsic apoptosis. CDK9 inhibition predominantly mediated venetoclax sensitization, while CDK4/6 inhibition with palbociclib did not potentiate venetoclax activity. Combined, venetoclax and alvocidib modulate the balance of BCL-2 family proteins through complementary, yet variable mechanisms favoring apoptosis, highlighting this combination as a promising therapy for AML or high-risk MDS with the capacity to overcome intrinsic apoptosis mechanisms of resistance. These results support clinical testing of combined venetoclax and alvocidib for the treatment of AML and advanced MDS.
BackgroundTherapy and outcome for elderly acute myeloid leukemia (AML) patients has not improved for many years. Similarly, there remains a clinical need to improve response rates in advanced myelodysplastic syndrome (MDS) patients treated with hypomethylating agents, and few combination regimens have shown clinical benefit. We conducted a 5-azacytidine (5-Aza) RNA-interference (RNAi) sensitizer screen to identify gene targets within the commonly deleted regions (CDRs) of chromosomes 5 and 7, whose silencing enhances the activity of 5-Aza.Methods and resultsAn RNAi silencing screen of 270 genes from the CDRs of chromosomes 5 and 7 was performed in combination with 5-Aza treatment in four AML cell lines (TF-1, THP-1, MDS-L, and HEL). Several genes within the hedgehog pathway (HhP), specifically SHH, SMO, and GLI3, were identified as 5-Aza sensitizing hits. The smoothened (SMO) inhibitors LDE225 (erismodegib) and GDC0449 (vismodegib) showed moderate single-agent activity in AML cell lines. Further studies with erismodegib in combination with 5-Aza demonstrated synergistic activity with combination index (CI) values of 0.48 to 0.71 in seven AML lines. Clonogenic growth of primary patient samples was inhibited to a greater extent in the combination than with single-agent erismodegib or 5-Aza in 55 % (6 of 11) primary patient samples examined. There was no association of the 5-Aza/erismodegib sensitization potential to clinical-cytogenetic features or common myeloid mutations. Activation of the HhP, as determined by greater expression of HhP-related genes, showed less responsiveness to single-agent SMO inhibition, while synergy between both agents was similar regardless of HhP gene expression. In vitro experiments suggested that concurrent dosing showed stronger synergy than sequential dosing.ConclusionsInhibition of the HhP with SMO inhibitors in combination with the hypomethylating agent 5-Aza demonstrates synergy in vitro and inhibits long-term repopulation capacity ex vivo in AML and MDS. A clinical trial combining 5-Aza with LDE225 (erismodegib) in MDS and AML is ongoing based on these results as well as additional publications suggesting a role for HhP signaling in myeloid disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-015-0211-8) contains supplementary material, which is available to authorized users.
The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.
Introduction Venetoclax (ABT-199) is an approved BCL-2 inhibitor for the treatment of patients with chronic lymphocytic leukemia (CLL). Multiple clinical trials are underway to explore its efficacy in additional indications. While venetoclax demonstrated high remission rates in combination with azacitidine in early stage clinical trials, the question of durability of responses and primary and acquired resistance remain, especially given the modest activity and rapid development of resistance as a single agent. One reported mechanism of intrinsic resistance is high expression of other BCL-2 family proteins, including MCL-1. We and others have demonstrated that the CDK9 inhibitor, alvocidib, can mediate transcriptional repression of anti-apoptotic MCL-1. It has also been shown that alvocidib can increase pro-apoptotic BIM, a dual activator and sensitizer BH3-only protein that can directly induce apoptosis and simultaneously inactivate anti-apoptotic BCL-2 family proteins such as MCL-1 and BCL-2, thus having the same effect on mitochondria-associated apoptosis as MCL-1 down-regulation, with the potential to directly induce apoptosis. An alvocidib-containing cytotoxic chemotherapy regimen demonstrated favorable remission rates in high-risk AML patients over standard therapy in a randomized Phase 2 trial indicating its potential role and safety in AML. We hypothesized that alvocidib and venetoclax would synergize against AML cells by shifting the overall balance of pro- and anti-apoptotic BCL-2 proteins in favor of apoptosis and thus represent a novel active treatment regimen in AML. Aims This study seeks to examine the efficacy of a treatment regimen containing alvocidib and venetoclax in multiple preclinical studies, including in vivo models of AML. Methods Cell viability assays interrogating alvocidib and venetoclax activity in cell lines were performed using CellTiter-Glo according to manufacturer's protocol. mRNA/miRNA expression changes were assessed using standard RT-PCR technique. Protein expression changes were assessed using standard western immunoblotting technique. To assess the efficacy of an alvocidib and venetoclax combination on tumor growth in an in vivo model, the OCI-AML3 xenograft mouse model and ex vivo studies with AML patient samples were performed. Results Herein we demonstrate that alvocidib inhibits both mRNA and protein expression of MCL-1 in a time and concentration-dependent fashion in 3 out of 4 AML cell lines analyzed, while in cells where alvocidib did not reduce MCL-1 protein levels (i.e. MOLM-13) a dose-dependent decrease in miR17-92, and concomitant increase in BIM protein was observed after 24 hours of alvocidib treatment. The alvocidib-venetoclax combination resulted in very strong synergistic reductions of cell viability (with combination indices [CI] of 0.4 to 0.7), both in venetoclax-sensitive and resistant cells. The venetoclax-sensitive lines, MV4-11 and MOLM-13, exhibited 5- to 10-fold reduction of venetoclax EC50 values in the low nM range when combined with only 80 nM alvocidib. Importantly, venetoclax-resistant lines, OCI-AML3 and THP-1, exhibited at least 20-fold reduction of venetoclax EC50 values from near 1 µM to 10-50 nM, when combined with 80 nM alvocidib.In the venetoclax-resistant OCI-AML3 xenograft model, single agent alvocidib and venetoclax achieved tumor growth inhibition (TGI) of 9.7 and 31.5%, respectively, while the combination achieved 87.9% TGI at the same dose levels of individual drugs. Conclusions Taken together, our data suggest that the combination of alvocidib with venetoclax is highly synergistic in vitro and in vivo, in both venetoclax-sensitive and -resistant AML across a heterogeneous genomic background. The particularly high level of synergy achieved in venetoclax-resistant cell lines highlights the central importance of both BCL-2 and MCL-1-mediated cell survival in AML. Importantly, the addition of alvocidib to venetoclax treatment reduced IC50s to clinically achievable concentrations. Therefore, we conclude that an alvocidib/venetoclax combination may be a novel approach for the treatment of AML and warrants further pre-clinical and clinical validation. Disclosures Whatcott: Tolero Pharmaceuticals: Employment. Kim:Tolero Pharmaceuticals: Employment. Haws:Tolero Pharmaceuticals: Employment. Mesa:Celgene: Research Funding; Galena: Consultancy; Promedior: Research Funding; Ariad: Consultancy; Novartis: Consultancy; CTI: Research Funding; Incyte: Research Funding; Gilead: Research Funding. Peterson:Tolero Pharmaceuticals: Employment. Siddiqui-Jain:Tolero Pharmaceuticals: Employment. Weitman:Tolero Pharmaceuticals: Employment. Bearss:Tolero Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties. Warner:Tolero Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.