Abstract. The economic and human consequences of extreme precipitation and the related flooding of urban areas have increased rapidly over the past decades. Some of the key factors that affect the risks to urban areas include climate change, the densification of assets within cities and the general expansion of urban areas. In this paper, we examine and compare quantitatively the impact of climate change and recent urban development patterns on the exposure of four European cities to pluvial flooding. In particular, we investigate the degree to which pluvial floods of varying severity and in different geographical locations are influenced to the same extent by changes in urban land cover and climate change. We have selected the European cities of Odense, Vienna, Strasbourg and Nice for analyses to represent different climatic conditions, trends in urban development and topographical characteristics. We develop and apply a combined remote-sensing and flood-modelling approach to simulate the extent of pluvial flooding for a range of extreme precipitation events for historical (1984) and present-day (2014) urban land cover and for two climate-change scenarios (i.e. representative concentration pathways, RCP 4.5 and RCP 8.5). Changes in urban land cover are estimated using Landsat satellite imagery for the period 1984-2014. We combine the remote-sensing analyses with regionally downscaled estimates of precipitation extremes of current and expected future climate to enable 2-D overland flow simulations and flood-hazard assessments. The individual and combined impacts of urban development and climate change are quantified by examining the variations in flooding between the different simulations along with the corresponding uncertainties. In addition, two different assumptions are examined with regards to the development of the capacity of the urban drainage system in response to urban development and climate change. In the "stationary" approach, the capacity resembles present-day design, while it is updated in the "evolutionary" approach to correspond to changes in imperviousness and precipitation intensities due to urban development and climate change respectively. For all four cities, we find an increase in flood exposure corresponding to an observed absolute growth in impervious surfaces of 7-12 % during the past 30 years of urban development. Similarly, we find that climate change increases exposure to pluvial flooding under both the RCP 4.5 and RCP 8.5 scenarios. The relative importance of urban development and climate change on flood exposure varies considerably between the cities. For Odense, the impact of urban development is comparable to that of climate change under an RCP 8.5 scenario (2081-2100), while for Vienna and Strasbourg it is comparable to the impacts of an RCP 4.5 scenario. For Nice, climate change dominates urban development as the primary driver of changes in exposure to flooding. The variation between geographical locations is caused by differences in soil infiltration properties, historical t...
Abstract. The extent and location of impervious surfaces within urban areas due to past and present city development strongly affects the amount and velocity of run-off during high-intensity rainfall and consequently influences the exposure of cities towards flooding. The frequency and intensity of extreme rainfall are expected to increase in many places due to climate change and thus further exacerbate the risk of pluvial flooding. This paper presents a combined hydrological-hydrodynamic modelling and remote sensing approach suitable for examining the susceptibility of European cities to pluvial flooding owing to recent changes in urban land cover, under present and future climatic conditions. Estimated changes in impervious urban surfaces based on Landsat satellite imagery covering the period 1984-2014 are combined with regionally downscaled estimates of current and expected future rainfall extremes to enable 2-D overland flow simulations and flood hazard assessments. The methodology is evaluated for the Danish city of Odense. Results suggest that the past 30 years of urban development alone has increased the city's exposure to pluvial flooding by 6 % for 10-year rainfall up to 26 % for 100-year rainfall. Corresponding estimates for RCP4.5 and RCP8.5 climate change scenarios are in the order of 40 and 100 %, indicating that land cover changes within cities can play a central role for the cities' exposure to flooding and conversely also for their adaptation to a changed climate.
Infiltration is a key process controlling runoff, but varies depending on antecedent conditions. This study provides estimates on initial conditions for urban permeable surfaces via continuous simulation of the infiltration capacity using historical rain data. An analysis of historical rainfall records show that accumulated rainfall prior to large rain events does not depend on the return period of the event. Using an infiltration-runoff model we found that for a typical large rain storm, antecedent conditions in general lead to reduced infiltration capacity both for sandy and clayey soils and that there is substantial runoff for return periods above 1–10 years.
Abstract. The economic and human consequences of extreme precipitation and the related flooding of urban areas have increased rapidly over the past decades. Some of the key factors that affect the risks to urban areas include climate change, the densification of assets within cities and the general expansion of urban areas. In this paper, we examine and compare quantitatively the impact of climate change and recent urban development patterns on the exposure of four European cities to pluvial flooding. In particular, we investigate the degree to which pluvial floods of varying severity and in different geographical locations are influenced to the same extent by changes in urban land cover and climate change. We have selected the European cities of Odense, Vienna, Strasbourg and Nice for analyses to represent, different climatic conditions, trends in urban development and topographical characteristics. We develop and apply a combined remote-sensing and flood-modelling approach to simulate the extent of pluvial flooding for a range of extreme precipitation events for historical (1984) and present-day (2014) urban land cover and for two climate-change scenarios (RCP 4.5 and RCP 8.5). Changes in urban land cover are estimated using Landsat satellite imagery for the period 1984–2014. We combine the remote-sensing analyses with regionally downscaled estimates of precipitation extremes of current and expected future climate to enable 2D overland flow simulations and flood-hazard assessments. The individual and combined impacts of urban development and climate change are quantified by examining the variations in flooding between the different simulations along with the corresponding uncertainties. For all four cities, we find an increase in flood exposure corresponding to an observed absolute growth in impervious surfaces of 7–12 % during the past thirty years of urban development. Similarly, we find that climate change increases exposure to pluvial flooding under both the RCP 4.5 and RCP 8.5 scenarios. The relative importance of urban development and climate change on flood exposure varies considerably between the cities. For Odense, the impact of urban development is comparable to that of climate change under an RCP 8.5 scenario (2081–2100), while for Vienna and Strasbourg it is comparable to the impacts of an RCP 4.5 scenario. For Nice, climate change dominates urban development as the primary driver of changes in exposure to flooding. The variation between geographical locations is caused by differences in soil infiltration properties, historical trends in urban development and the projected regional impacts of climate change on extreme precipitation.
Urban water drainage systems represent complex networks with nonlinear dynamics and different types of interactions. This yields an involved modeling problem for which different off-line simulation approaches are available. Nevertheless, these approaches cannot be used for real-time simulations, i.e., running in parallel to weather now- and forecasts and enabling the monitoring and automatic control of urban water drainage systems. Alternative approaches, used commonly for automation purposes, involve parameterized linear delay systems, which can be used in real-time but lack the necessary level of detail, which, in particular, is required for adequate flood risk prognostics. Given this setup, in the present paper, an approach for the effective modeling of detailed water drainage systems for real-time applications implemented with the open-source Storm Water Management Model (SWMM) software is addressed and exemplified for a part of the water drainage system of the city of Flensburg in northern Germany. Additionally, a freely available early-warning system prototype is introduced and used to combine weather forcast information on a 2-h prediction horizon with the developed model and available measurements. This prototype is subsequently used for data assimilation using the ensemble Kalman filter (EnKF) for the considered area in Flensburg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.