Hemophilia B (HB) is an X-linked recessive bleeding disorder, caused by F9 gene deficiency. Gene therapy combined with the CRISPR/Cas9 technology offers a potential cure for hemophilia B. Now the Cas9 nickase (Cas9n) shows a great advantage in reducing off-target effect compared with wild-type Cas9. In this study, we found that in the multicopy ribosomal DNA (rDNA) locus, the homology directed recombination (HDR) efficiency induced by sgRNA-Cas9n was much higher than sgRNA-Cas9, meanwhile without off-target in six predicted sites. After co-transfection into mESCs with sgRNA-Cas9n and a non-viral rDNA targeting vector pMrnF9, harboring the homology donor template and the human F9 expression cassette, a recombination efficiency of 66.7% was achieved and all targeted clones were confirmed to be site-specific integration of F9 in the rDNA locus by PCR and southern blotting. Targeted mESCs retained the main pluripotent properties and were then differentiated into hepatic progenitor like cells (HPLCs) and mature hepatocytes, which were characterized by hepatic markers and functional assays. Importantly, the differentiated cells could transcribe exogenous F9 and secrete coagulation factor IX (FIX) proteins, suggesting active transcription and stable inheritance of transgenes in the rDNA locus. After intrasplenical transplantation in severe combined immune deficiency (SCID) mice, targeted HPLCs could survive and migrate from spleen to liver, resulting in secretion of exogenous FIX into blood. In summary, we demonstrate an efficient and site-specific gene targeting strategy in rDNA locus for stem cell-based gene therapy for hemophilia B.
The present study examined sequence variability in two mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1), and internal transcribed spacer (ITS) of nuclear ribosomal DNA (rDNA) among Oesophagostomum asperum isolates from goats in Hunan Province, China. A portion of the cox1 (pcox1), nad1 (pnad1) genes and the ITS (ITS1+5.8S rDNA+ITS2) rDNA were amplified by polymerase chain reaction (PCR) separately from adult O. asperum individuals and the representative amplicons were subjected to sequencing from both directions. The lengths of pcox1, pnad1 and ITS rDNA were 366 bp, 681 bp and 785 bp, respectively. The A+T contents of gene sequences were 71.5-72% for pcox1, 73.7-74.2% for pnad1 and 58-58.8% for ITS rDNA. Intra-specific sequence variations within O. asperum were 0-1.6% for pcox1, 0-1.9% for pnad1 and 0-1.7% for ITS rDNA, while inter-specific sequence differences among members of the genus Oesophagostomum were significantly higher, being 11.1-12.5%, 13.3-17.7% and 8.5-18.6% for pcox1, pnad1 and ITS rDNA, respectively. Phylogenetic analyses using combined sequences of pcox1 and pnad1, with three different computational algorithms (Bayesian inference, maximum likelihood and maximum parsimony), revealed distinct groups with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA and rDNA sequences among O. asperum isolates from goats in Hunan Province, China, and have implications for studying molecular epidemiology and population genetics of O. asperum.
Spinal muscular atrophy (SMA) is a devastating autosomal recessive motor neuron disease associated with mutations in the survival motor neuron 1 (SMN1) gene, the leading genetic cause of infant mortality. A nearly identical copy gene (SMN2) is retained in almost all patients with SMA. However, SMN2 fails to prevent disease development because of its alternative splicing, leading to a lack of exon 7 in the majority of SMN2 transcripts and yielding an unstable truncated protein. Several splicing regulatory elements, including intronic splicing silencer-N1 (ISS-N1) of SMN2 have been described. In this study, targeted-deletion of ISS-N1 was achieved using prime editing (PE) in SMA patient-specific induced pluripotent stem cells (SMA-iPSCs) with a high efficiency of 7/24. FL-SMN expression was restored in the targeted-deletion iPS clones and their derived motor neurons (iMNs). Notably, the apoptosis of the iMNs, caused by the loss of SMN protein that leads to the hyperactivity of endoplasmic reticulum (ER) stress, was alleviated in targeted-deletion iPSCs derived-iMNs. Thus, this is the first study to demonstrate that the targeted-deletion of ISS-N1 via PE for restoring FL-SMN expression holds therapeutic promise for SMA.
(1) Background: Gene editing technology, as represented by CRISPR is a powerful tool used in biomedical science. However, the editing efficiency of such technologies, especially in induced pluripotent stem cells (iPSCs) and other types of stem cells, is low which hinders its application in regenerative medicine; (2) Methods: A gene-editing system, COE, was designed and constructed based on CRISPR/Cas12a and Orip/EBNA1, and its editing efficiency was evaluated in human embryonic kidney 293T (HEK-293T) cells with flow cytometry and restriction fragment length polymorphism (RFLP) analysis. The COE was nucleofected into iPSCs, then, the editing efficiency was verified by a polymerase chain reaction and Sanger sequencing; (3) Results: With the extension of time, COE enables the generation of up to 90% insertion or deletion rates in HEK-293T cells. Furthermore, the deletion of a 2.5 kb fragment containing Exon 51 of the dystrophin gene (DMD) in iPSCs was achieved with high efficiency; out of 14 clones analyzed, 3 were positive. Additionally, the Exon 51-deleted iPSCs derived from cardiomyocytes had similar expression profiles to those of Duchenne muscular dystrophy (DMD) patient-specific iPSCs. Moreover, there was no residue of each component of the plasmid in the editing cells; (4) Conclusions: In this study, a novel, efficient, and safe gene-editing system, COE, was developed, providing a powerful tool for gene editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.