The maize pangenome has demonstrate large amounts of presence/absence variation and it has been hypothesized that presence/absence variation contributes to stress response. To uncover whether the observed genetic variation in physiological response to elevated ozone (a secondary air pollutant that causes significant crop yield losses) concentration is due to variation in genic content, and/or variation in gene expression, we examine the impact of sustained elevated ozone concentration on the leaf tissue from 5 diverse maize inbred genotypes (B73, Mo17, Hp301, C123, NC338). Analysis of long reads from the transcriptomes of the 10 conditions found expressed genes in the leaf are part of the shared genome, with 94.5% of expressed genes from syntenic loci. Quantitative analysis of short reads from 120 plants (twelve from each condition) found limited transcriptional response to sustained ozone stress in the ozone resistant B73 genotype (151 genes), while more than 3,300 genes were significantly differentially expressed in the more sensitive NC338 genotype. The genes underpinning the divergence of B73 from the other 4 genotypes implicates ethylene signaling consistent with some findings in Arabidopsis. For the 82 of the 83 genes differentially expressed among all 5 genotypes and the 788 of 789 genes differentially expressed in 4 genotypes (excluding B73) in sensitivity to ozone is associated with oxidative stress tolerance being associated with a weaker response to a reactive oxygen species (ROS) signal and suggests that genetic variation in downstream processes is key to ozone tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.