Chest X-ray (CXR) is one of the most commonly prescribed medical imaging procedures, often with over 2-10x more scans than other imaging modalities such as MRI, CT scan, and PET scans. These voluminous CXR scans place significant workloads on radiologists and medical practitioners. Organ segmentation is a crucial step to obtain effective computer-aided detection on CXR. In this work, we propose Structure Correcting Adversarial Network (SCAN) to segment lung fields and the heart in CXR images. SCAN incorporates a critic network to impose on the convolutional segmentation network the structural regularities emerging from human physiology. During training, the critic network learns to discriminate between the ground truth organ annotations from the masks synthesized by the segmentation network. Through this adversarial process the critic network learns the higher order structures and guides the segmentation model to achieve realistic segmentation outcomes. Extensive experiments show that our method produces highly accurate and natural segmentation. Using only very limited training data available, our model reaches human-level performance without relying on any existing trained model or dataset. Our method also generalizes well to CXR images from a different patient population and disease profiles, surpassing the current state-of-the-art.
The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our system's prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.
Salient segmentation aims to segment out attentiongrabbing regions, a critical yet challenging task and the foundation of many high-level computer vision applications. It requires semantic-aware grouping of pixels into salient regions and benefits from the utilization of global multi-scale contexts to achieve good local reasoning. Previous works often address it as two-class segmentation problems utilizing complicated multi-step procedures including refinement networks and complex graphical models. We argue that semantic salient segmentation can instead be effectively resolved by reformulating it as a simple yet intuitive pixel-pair based connectivity prediction task. Following the intuition that salient objects can be naturally grouped via semanticaware connectivity between neighboring pixels, we propose a pure Connectivity Net (ConnNet). ConnNet predicts connectivity probabilities of each pixel with its neighboring pixels by leveraging multi-level cascade contexts embedded in the image and long-range pixel relations. We investigate our approach on two tasks, namely salient object segmentation and salient instancelevel segmentation, and illustrate that consistent improvements can be obtained by modeling these tasks as connectivity instead of binary segmentation tasks for a variety of network architectures. We achieve state-of-the-art performance, outperforming or being comparable to existing approaches while reducing inference time due to our less complex approach.
With the increasing concern on climate change and global warming, the reduction of carbon emission becomes an important topic in many aspects of human society. The development of energy Internet (EI) makes it possible to achieve better utilization of distributed renewable energy sources with the power sharing functionality introduced by energy routers (ERs). In this paper, a bottom-up EI architecture is designed, and a novel data-driven dynamical control strategy is proposed. Intelligent controllers augmented by deep reinforcement learning (DRL) techniques are adopted for the operation of each microgrid independently in the bottom layer. Moreover, the concept of curriculum learning (CL) is integrated into DRL to improve the sample efficiency and accelerate the training process. Based on the power exchange plan determined in the bottom layer, considering the stochastic nature of electricity price in the future power market, the optimal power dispatching scheme in the upper layer is decided via model predictive control. The simulation has shown that, under the bottom-up architecture, compared with the conventional methods such as proportional integral and optimal power flow, the proposed method reduces overall generation cost by 7.1% and 37%, respectively. Meanwhile, the introduced CL-based training strategy can significantly speed up the convergence during the training of DRL. Last but not least, our method increases the profit of energy trading between ERs and the main grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.